Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Informatics and Digital Expert (INDEX)

Optimasi Pemilihan Metode Pengajaran Dosen Menggunakan Data Mining, dan Algoritma K-Means dalam Proses Bisnis Pendidikan Ali Farizal, De; Antonius Alijoyo, Franciskus
Informatics and Digital Expert (INDEX) Vol. 6 No. 2 (2024): INDEX, November 2024
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v6i2.1883

Abstract

Perguruan tinggi di Indonesia dihadapkan pada tantangan tingginya jumlah lulusan yang kurang memiliki kompetensi sesuai dengan kebutuhan dunia kerja, menciptakan kesenjangan antara lingkungan pendidikan dan pasar kerja. Hal ini menimbulkan kekhawatiran akan hambatan kemajuan bangsa. Salah satu penyebabnya adalah metode pembelajaran tradisional yang tidak mengakomodasi berbagai gaya belajar dan kebutuhan individual mahasiswa. Teknologi informasi dan komunikasi (TIK), khususnya data mining, menawarkan solusi untuk meningkatkan kualitas pendidikan dengan menganalisis karakteristik mahasiswa agar metode pembelajaran dapat disesuaikan dan materi lebih mudah dipahami. Data mining, atau Knowledge Discovery in Database atau yang disebut (KDD), adalah proses otomatis mengumpulkan dan menganalisis data untuk mengidentifikasi pola dengan teknik seperti pengelompokan, asosiasi, dan prediksi. Metode clustering K-Means, yang mengelompokkan data berdasarkan karakteristik serupa, dapat digunakan untuk menentukan metode pembelajaran paling efektif. Universitas Cipasung Tasikmalaya (Uncip) dapat memanfaatkan data mining dan algoritma K-Means untuk mengklasifikasikan dan memilih metode pengajaran yang optimal guna meningkatkan kompetensi lulusannya sesuai dengan kebutuhan dunia kerja
Analisis Prediksi Pola Penjualan pada Kantin Sehat Universitas Majalengka menggunakan Data Mining Metode Time Series Analysis dan Algoritma SARIMA Herdi Prayoga, Aa; Antonius Alijoyo, Franciskus
Informatics and Digital Expert (INDEX) Vol. 6 No. 2 (2024): INDEX, November 2024
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v6i2.1905

Abstract

Penerapan data mining memberikan dampak serta kontribusi besar dalam berbagai bidang dan sektor termasuk ritel dan layanan makanan. Data mining dalam konteks analisis telah menjadi salah satu kunci dalam memahami pola dan tren pada sebuah kumpulan data, pada kantin sehat Universitas Majalengka terdapat 406 hingga 686 transaksi perminggu nya, seringkali pada pengelolaan persediaan menjadi kendala mengakibatkan pembengkakan biaya operasional yang pada akhirnya mengurangi profitabilitas kantin. metode time series analysis analysis dan algoritma ARIMA dapat digunakan untuk memprediksi nilai bedasarakan data historis dengan tujuan untuk mengoptimalkan pengelolaan persediaan stok berbasis data. Data transaksi penjualan harian secara historis yang diambil dari satu tenant selama periode tertentu digunakan sebagai sampel analisis untuk memprediksi penjualan mingguan dimasa yang akan datang. Hasil prediksi pola penjualan diharapkan dapat dijadikan acuan pengambilan keputusan strategis pada manajemen operasional kantin memberikan rekomendasi pengadaan stok yang lebih efisien, mengurangi biaya operasional, dan meningkatkan profitabilitas kantin
Optimasi Pemilihan Metode Pengajaran Dosen Menggunakan Data Mining, dan Algoritma K-Means dalam Proses Bisnis Pendidikan Ali Farizal, De; Antonius Alijoyo, Franciskus
Informatics and Digital Expert (INDEX) Vol. 6 No. 2 (2024): INDEX, November 2024
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v6i2.1883

Abstract

Perguruan tinggi di Indonesia dihadapkan pada tantangan tingginya jumlah lulusan yang kurang memiliki kompetensi sesuai dengan kebutuhan dunia kerja, menciptakan kesenjangan antara lingkungan pendidikan dan pasar kerja. Hal ini menimbulkan kekhawatiran akan hambatan kemajuan bangsa. Salah satu penyebabnya adalah metode pembelajaran tradisional yang tidak mengakomodasi berbagai gaya belajar dan kebutuhan individual mahasiswa. Teknologi informasi dan komunikasi (TIK), khususnya data mining, menawarkan solusi untuk meningkatkan kualitas pendidikan dengan menganalisis karakteristik mahasiswa agar metode pembelajaran dapat disesuaikan dan materi lebih mudah dipahami. Data mining, atau Knowledge Discovery in Database atau yang disebut (KDD), adalah proses otomatis mengumpulkan dan menganalisis data untuk mengidentifikasi pola dengan teknik seperti pengelompokan, asosiasi, dan prediksi. Metode clustering K-Means, yang mengelompokkan data berdasarkan karakteristik serupa, dapat digunakan untuk menentukan metode pembelajaran paling efektif. Universitas Cipasung Tasikmalaya (Uncip) dapat memanfaatkan data mining dan algoritma K-Means untuk mengklasifikasikan dan memilih metode pengajaran yang optimal guna meningkatkan kompetensi lulusannya sesuai dengan kebutuhan dunia kerja
Analisis Prediksi Pola Penjualan pada Kantin Sehat Universitas Majalengka menggunakan Data Mining Metode Time Series Analysis dan Algoritma SARIMA Herdi Prayoga, Aa; Antonius Alijoyo, Franciskus
Informatics and Digital Expert (INDEX) Vol. 6 No. 2 (2024): INDEX, November 2024
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v6i2.1905

Abstract

Penerapan data mining memberikan dampak serta kontribusi besar dalam berbagai bidang dan sektor termasuk ritel dan layanan makanan. Data mining dalam konteks analisis telah menjadi salah satu kunci dalam memahami pola dan tren pada sebuah kumpulan data, pada kantin sehat Universitas Majalengka terdapat 406 hingga 686 transaksi perminggu nya, seringkali pada pengelolaan persediaan menjadi kendala mengakibatkan pembengkakan biaya operasional yang pada akhirnya mengurangi profitabilitas kantin. metode time series analysis analysis dan algoritma ARIMA dapat digunakan untuk memprediksi nilai bedasarakan data historis dengan tujuan untuk mengoptimalkan pengelolaan persediaan stok berbasis data. Data transaksi penjualan harian secara historis yang diambil dari satu tenant selama periode tertentu digunakan sebagai sampel analisis untuk memprediksi penjualan mingguan dimasa yang akan datang. Hasil prediksi pola penjualan diharapkan dapat dijadikan acuan pengambilan keputusan strategis pada manajemen operasional kantin memberikan rekomendasi pengadaan stok yang lebih efisien, mengurangi biaya operasional, dan meningkatkan profitabilitas kantin