Claim Missing Document
Check
Articles

Found 9 Documents
Search

Numerical Study of Characteristics of 3D Flow in Square Duct 90° Elbow with Diamond Bodied Disturbance Fernandes, Yogi Eka; Sutardi, Sutardi; Purnama, Randi
IPTEK Journal of Proceedings Series No 1 (2019): 4th International Seminar on Science and Technology 2018 (ISST 2018)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23546026.y2019i1.5112

Abstract

The use of elbow in the fluid mechanics system produces a larger pressure drop. The purpose of this research is to know the flow characteristic through square channel with elbow 90. The diamond-shaped body disturbance is placed at 10° inside the elbow inlet. This research was conducted in 3D simulation with standard k-3 turbulence model. The cross-sectional area uses a square with a side size of 125 mm, then the hydraulic diameter (Dh) is 125 mm as well. The elbow curvature ratio (R / D) is set to 3. A body disorder with diagonal (l / D) ratio at 0.064, 0.08 and 0.1 is placed at 10° in the elbow inlet. The results in this study indicate that body disorders with diamond shape can delay the separation of flow and increase the intensity of turbulence flow. Finally, the results also show that the pressure drop is reduced
Comparative Study Aerodynamics Effects of Wingtip Fence Winglet on Fix Wing Airfoil Eppler E562 Setyo Hariyadi Suranto Putro; Sutardi Sutardi; Wawan Aries Widodo; Bambang Juni Pitoyo
WARTA ARDHIA Vol 45, No 2 (2019)
Publisher : Research and Development Agency of The Ministry of Transportation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25104/wa.v45i2.356.67-76

Abstract

Wings on airplanes and Unmanned Aerial Vehicles (UAVs) have a very important role in the formation of lift forces. This is because most of the lifting force arises on the wing. Therefore, aircraft designers pay great attention to wing modification. Today's aircraft designers tend to provide geometric modifications displayed in computational applications so that visualization of fluid flow can appear clearly. By increasing the lift as high as possible on the wing and lowering the drag as low as possible, it is expected that high aerodynamic efficiency will be achieved in air transportation. This research was done numerically by using the turbulence model k-ω SST. Reynolds number in this research was 2,34 x 104 with the angle of attacks are 0o, 2o, 4o, 6o, 8o, 10o, 12o, 15o, 17o and 19o. The model specimen is wing airfoil Eppler 562 with winglets. Two types of wingtips are used: forward and rearward wingtip fence. From this study, it was found that the wingtip fence reduced the strength of vorticity magnitude on the x-axis and z-axis compared to plain wings. With the addition of a wingtip fence, it has a significant effect on the shape of the vorticity magnitude behind the wing. This indicates a decrease in induced drag on the wing which has a wingtip fence.
Comparative Study of Forward Wingtip Fence and Rearward Wingtip Fence on Wing Airfoil Eppler E562 Setyo Hariyadi; Sutardi Sutardi; Wawan Aries Widodo; Bambang Juni Pitoyo
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 5 No. 1 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v5i1.11968

Abstract

The perfect wing is a dream that many airplanes has manufactured have been striving to achieve since the beginning of the airplane design. There are some aspect that most influence in aircraft design lift, drag, thrust, and weight. The combination of these aspects leads to a decrease in fuel consumption, which reduces pollution in our atmosphere and increase in economic revenue. One way to improve aircraft performance is to modify the tip of the wing geometry, which has become a common sight on today’s airplanes. With computational programs, the effects on drag due to wingtip devices can be previewed. This research was done numerically by using turbulence model k-ω SST. Reynolds number in this research was 2,34 x 10 4 with angle of attacks are 0o, 2o, 4o, 6o, 8o, 10o, 12o, 15o, 17o and 19o. The model specimen is wing airfoil Eppler 562 with winglets. Two types of wingtips are used: forward and rearward wingtip fence. From this study, it was found that wingtip fence reduced the strength of vorticity magnitude on the x axis compared to plain wings. The leakage of fluid flow effect at the leading edge corner of the wingtip, giving pressure gradient and slightly shifting towards the trailing edge. this occurs in the plain wing and rearward wingtip fence but does not occur in the forward wingtip fence..
Studi Numerik Penambahan Obstacle Terhadap Kinerja Kolektor Surya Pemanas Udara dengan Plat Penyerap Jenis V-Corrugated Ekadewi A. Handoyo; Djatmiko Ichsani; Prabowo .; Sutardi .
Jurnal Teknik Mesin (Sinta 3) Vol. 14 No. 1 (2013): APRIL 2013
Publisher : Institute of Research and Community Outreach, Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kolektor surya pemanas udara dapat digunakan untuk menghasilkan udara panas dengan sumber energi yang terbarukan.Namun, perpindahan kalor dari plat penyerap ke udara sangat rendah. Beberapa peneliti melaporkan bahwa obstacle dapat meningkatkan perpindahan kalor dalam kolektor surya saluran plat datar dan peneliti lain menemukan bahwa kolektor surya dengan plat penyerap jenis v-corrugated memberikan perpindahan kalor yang lebih besar daripada saluran plat datar. Namun, belum ada penelitian yang menggabungkan keduanya. Dalam paper ini akan dibahas studi numerik dari penggabungan keduanya, yaitu penambahan obstacle terhadap kinerja kolektor surya pemanas udara dengan plat penyerap jenis v-corrugated. Studi diawali dengan pembuatan mesh, pemberian kondisi batas, pemberian data input, dan pemilihan model turbulen. Hasil studi numerik dibandingkan dengan hasil eksperimen untuk mengetahui keabsahannya.Suatu kolektor surya pemanas udara dibangun dengan skala laboratorium untuk keperluan eksperimen ini.Eksperimen dilakukan di dalam ruangan agar kondisi lingkungan dapat dijaga konstan.Dari eksperimen didapat bahwa udara mengalami kenaikan temperatur lebih tinggi dan penurunan tekanan lebih besar saat diberi obstacle. Untuk udara dengan kecepatan 6,5 m/s dan intensitas radiasi 430 W/m2, udara mengalami kenaikan dari 24,5oC menjadi 37,2oC jika tanpa obstacle dan dari 24,3oC menjadi 40,5oC jika diberi obstacle serta peningkatan penurunan tekanan dari 94 menjadi 265 Pa dengan penambahan obstacle. Model turbulen yang tepat untuk studi numerik ini adalah Shear Stress Transport (SST) k-.Dari studi numerik yang dilakukan, didapatkan bahwa aliran balik di antara obstacle dan celah sempit di antara obstacle dengan plat penyerap menyebabkan aliran lebih turbulen dan perpindahan kalor konveksi ke udara dari plat penyerap kolektor meningkat.Hasil studi numerik konsisten dengan hasil eksperimen.
The Rate of Turbulent Kinetic Energy Dissipation in a Turbulent Boundary layer on a Flat Plate Sutardi Sutardi
IPTEK Journal of Proceedings Series Vol 1, No 1 (2014): International Seminar on Applied Technology, Science, and Arts (APTECS) 2013
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23546026.y2014i1.322

Abstract

The rate of turbulent kinetic energy dissipation (e) is an important parameter in the turbulent flows, such as pipe flows, channel flows, atmospheric turbulence, ocean turbulence, and turbulent boundary layer flows. This study is concerning in the evaluation of the rate of turbulent kinetic energy dissipation in turbulent boundary layers developing on a flat plate. In this study, e is obtained simply from the calculation using Taylor’s frozen hypothesis. The study is performed experimentally using a low speed wind tunnel with a squared test section of 91 x 91 x 540 cm. The maximum attainable freestream velocity is approximately of 15 m/s with freestream turbulence intensity is less than 0.5%. Instantaneous fluid velocity is measured using a hot-wire anemometry system connected to a data acqusition and a personal computer. The experiments are performed at freestream velocities of 2.0 m/sec and 5.5 m/sec corresponding with momentum thickness Reynolds numbers (Rq) of approximately 1000 and 3000, respectively. The results show that maximum value of e is at approximately 1 < y+ < 10 at both Reynolds numbers. The results of e in the smooth-wall flat plate boundary layer are compared to that in the boundary layer on the flat plate modified with a square groove. There is a slight difference between e in the smooth-wall flat plate boundary layer and that in the boundary layer on the flat plate with a square groove.
Study of Flow Characteristics in a Closed-Loop Low-Speed Wind Tunnel Ahmad Anis; Sutardi Sutardi
JMES The International Journal of Mechanical Engineering and Sciences Vol 1, No 2 (2017)
Publisher : LPPM, Institut Teknologi Sepuluh Nopember, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j25807471.v1i2.3900

Abstract

Wind tunnel is an element or experimental device that plays an important role in the development of aerodynamics. In general, there are two types of wind tunnels: open-loop wind tunnels and closed-loop wind tunnels. Furthermore, based on the flow velocity in the wind tunnel, the wind tunnel can also be categorized into several types: low-speed wind tunnel and high-speed wind tunnel, including sub-sonic and supersonic wind tunnels. In this study it is used a low-speed closed-loop wind tunnel type. The maximum atainable velocity of airflow in the wind tunnel is about 46 m/s with turbulence intensity (TI) as low as 0.41 percent. The flow parameters that being evaluated in this study include the velocity profiles and intensity of turbulence (TI) in some parts or sections of the wind tunnel. Pressure measurements in the wind tunnel are performed using a Pitot tube connected to a calibrated pressure transducer. The measured values of pressures are then converted into the fluid velocities and turbulence intensities. The results show that the flow quality in the main test section of the wind tunnel is good enough. The intensity of the flow turbulence on the inlet side of the test section is about 0.41 percent at the centerline velocity of approximately 40 m/s. In some parts of the wind tunnel, turbulence intensity is still relatively high, as in the small elbow outlet where TI is higher than 18 percent.
Experimental Study of Single Stage Centrifugal Pump Characteristics and Cussons Friction Loss Apparatus Kania Amelia Safitri; Sutardi Sutardi
JMES The International Journal of Mechanical Engineering and Sciences Vol 3, No 2 (2019)
Publisher : LPPM, Institut Teknologi Sepuluh Nopember, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j25807471.v3i2.9371

Abstract

Water is a primary need for human life. Because of its important use, an integrated system was built consisting of pumps and pipes to distribute water. The phenomenon of energy loss is found in the process of distributing water using pumps and pipes. To understand the energy loss phenomenon that occurs, an experimental test is carried out on a piping installation. Fluid mechanics and turbomachinery laboratories have experimental test equipment in the form of CUSSONS friction loss in pipe apparatus with a single-stage centrifugal pump to study the energy loss phenomenon that occurs in piping installations. This test equipment is composed of two kinds of pipe materials, namely PVC and acrylic, with variations in pipe diameter of 0.75 and 1.0 inch, flow meters in the form of venturi and orifice, pipe fittings in the form of elbow 45◦ , long radius elbow 90◦ , short radius elbow 90◦ , a valve in the form of ball-valve and pump connected to the NEWMAN electric motor which has a power of 1.5 HP and a rotational speed of 2850 RPM. The pressure drop in the piping installation was measured using a mercury manometer, the increase in pump pressure was measured with a pressure gauge, and the current and voltage of the motor pump were measured using a clamp meter. The flow rate for the installation was varied between 10L/min to 55 L/min with an increase in the flow rate of 5 L/min for the data collection on straight-pipe line I, fittings, and ball valves, on straight-pipe line II the variation of discharge only reached 40 L/min, while the variation of discharge for the flow meters was from 10 L/min to 30 L/min with an increase in the flow rate of 2 L/min for the orifice and 4 L/min for the venturi. Based on the experimental test data, it was found that the loss coefficient value (Kl) for K90= 0.58, for K45= 0.38, KBV = 0.62, and KLRE= 0.611. Relative roughness (e/D) on pipe line I= 0.0043 and pipe line II = 0.024. The coefficient of discharge (Cd) on the venture-type flow meter Ce= 0.91 and Co= 0.72 at maximum discharge. Maximum pump efficiency (ηp) was 27.1% when the pump head= 18.79 m.
Numerical Study of Airfoil Selection and Analysis of 3D Flow Phenomenon past Finite-Span Wings for Small UAVs Fauzi Perdana; Sutardi Sutardi
JMES The International Journal of Mechanical Engineering and Sciences Vol 4, No 1 (2020)
Publisher : LPPM, Institut Teknologi Sepuluh Nopember, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j25807471.v4i1.9364

Abstract

Small unmanned aerial vehicle (SUAV) is an unmanned aircraft vehicle (UAV) that flies at an altitude of lower than 1,100 m from the ground, has a maximum gross takeoff weight of 10 kg, and a flight speed of less than 50 m/s. One of the design factors for the small UAV design with a fixed-wing propeller is the airfoil selection. The selection of an airfoil profile using aerodynamic concepts leads to a performance coefficient that determines the selected airfoil’s sustainability and efficiency. The coefficients used are CL, CD, and CM. Numerical studies were carried out using Computational Fluid Dynamics using XFLR5 and ANSYS Fluent 19.1 software to evaluate airfoils in 2D and evaluate the phenomenon of induced drag on the wings in 3D. Airfoil selection was made on five types of airfoils: AH 83-150 Q, E399, E431, E715, and E662. The coefficients of CL, CD, and CM were obtained by varying α. 3D analysis of selected airfoil geometry with finite span. Simulation of steady conditions using Reynolds-Averaged-Navier-Stokes (RANS) in the Spalart-Allmaras turbulent model with variations of α = 0 ◦ , 8◦ , 12◦ , and 16◦ . The post-processor visualized the flow around the wing with pressure contours, velocity pathlines, and tip vortices. The analysis was carried out on the aerodynamic coefficients of CL, CD, CM, and CMr with α variation on the finite span wing. Based on the research, the results showed that the selected airfoil was E431, the aerodynamic performance of the CL, CD, CL/CD, CM, and CMr wings. In addition, information was also obtained regarding a decrease in the pressure difference between the upper surface and lower surface of the wing with an increasing span, 3D streamline, the extent of the contour of the vorticity magnitude, and a streamline on the wingtip on the upper surface and lower surface of the wing.
Analisis Kinerja Boiler Pada Proses Pre-Treatment dengan Sistem Monitoring berbasis SCADA Salfin Wijaya, Andres; Nadhiroh, Nuha; ., Sadili; ., Sutardi
Electrices Vol 4 No 2 (2022): Volume 4 Nomor 2 Tahun 2022
Publisher : Jurusan Teknik Elektro, Politeknik Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32722/ees.v4i2.5368

Abstract

Penelitian ini dilakukan untuk mengetahui kinerja boiler yang dipakai pada proses pre-treatment dengan sistem monitoring yang menggunakan SCADA. Monitoring tersebut merupakan kegiatan mengamati secara seksama suatu keadaan atau kondisi, dengan tujuan agar semua data masukan atau informasi yang diperoleh dari hasil pengamatan tersebut dapat menjadi landasan informasi yang tepat dan akurat. Software yang digunakan untuk monitoring adalah Wonderware InTouch sebagai tampilan antarmuka. Parameter yang diukur antara lain adalah; (1) tekanan; (2) suhu; (3) daya pemakain boiler. Hasil penelitian ini menunjukkan bahwa SCADA dapat merepresentasikan sebuah parameter data secara real time yang dihasilkan oleh boiler. Data tersebut nantinya akan dikumpulkan secara terpusat dan digunakan untuk analisis kinerja sistem.