Claim Missing Document
Check
Articles

Found 3 Documents
Search

Optimasi Parameter Proses di Mesin 3D Printing Jenis Fused Deposition Modeling (FDM) dengan Filamen ABS pada Produk Poros Berpasangan menggunakan Metode Taguchi Purnawarman, Otto
JTRM (Jurnal Teknologi dan Rekayasa Manufaktur) Vol 5 No 1 (2023): Volume: 5 | Nomor: 1 | April 2023
Publisher : Pusat Penelitian, Pengembangan, dan Pemberdayaan Masyarakat (P4M) Politeknik Manufaktur Bandung (Polman Bandung)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.48182/jtrm.v5i1.125

Abstract

Making customizing single product, we can use the additive manufacturing method. One of the additive manufacturing technologies is 3D printing. 3D Printing machines which often found on the market are Fused Depsition Modeling (FDM) technology. The fused deposition method or FDM is an additive manufacturing method which uses the concept of adding layers or materials to each layer. One of the main materials in the 3D printing process is ABS filament. However, the 3D Printing machine with FDM technology has a weakness, if you want to make products that are paired and have tolerances it will be difficult because the surface will appear to have lines that show the boundaries between layers. These lines are influenced by the parameters contained in 3D Printing. The Taguchi method is used to obtain optimum parameter variations and uses ANOVA analysis to determine what factors influence the shrinkage response to specific tolerances. The optimum combination of parameters on the shrinkage/deviation response to special tolerances on the inside diameter, namely nozzle temperature 230, print speed 70 and layer height 0.20. And on the outside diameter, namely the nozzle temperature is 250, the print speed is 90 and the layer height is 0.2.
Rancang Bangun Special Service Tool Remove dan Install Valve Spring Engine Dxi11 pada Unit Renault Trucks Akbar, Syaeful; Syahruddin, Syahruddin; Kartiko, Irfak Juwono; Purnawarman, Otto
JURNAL ALAT BERAT Vol 1 No 1 (2024): Januari 2024
Publisher : Politeknik Negeri Balikpapan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32487/jab.v1i1.8

Abstract

Penelitian ini bertujuan untuk mengembangkan special service tool yang mampu menekan keempat valve spring secara bersamaan, sehingga proses remove dan install valve spring dapat dilakukan lebih cepat dibandingkan dengan special tool sebelumnya. Berdasarkan hasil observasi yang telah dilakukan, special tool sebelumnya hanya dapat melakukan remove dan install dua buah valve spring. Selain itu metode pengoperasiannya menggunakan mekanisme tenaga mekanik sebagai penekannya, sehingga mengakibatkan keausan dan kerusakan thread pada stud bar. Metode ini juga tidak sesuai dengan prosedur yang telah ditetapkan pada General Book DXi 11. Hasil penelitian ini menunjukkan bahwa rancang bangun special service tool yang baru telah dilakukan analisa uji kekuatan dengan menggunakan software solidworks simulation. Hasilnya menunjukan bahwa masing-masing komponen aman menahan beban kerja dengan safety factor minimum 7,6. Hasil metode penekanannya yang menggunakan hydraulic system (sistem hidrolik) juga sesuai dengan prosedur yang tertera dalam General Book DXi 11. Oleh sebab itu memiliki kemampuan me-remove dan install 4 (empat) valve spring per-cylinder sekaligus dengan waktu yang lebih cepat.
Redesign of Cover Lower Dies on Compaction Tool in Sealface Manufacturing Based on Powder Metallurgy Process Media, Riona Ihsan; Purnawarman, Otto; Budiarto, Hanif Azis; Caesario, Daffa
METAL: Jurnal Sistem Mekanik dan Termal Vol. 8 No. 1 (2024): Jurnal Sistem Mekanik dan Termal (METAL)
Publisher : Department of Mechanical Engineering, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/metal.8.1.25-38.2024

Abstract

The cover lower dies constitute a vital component of the ejector compaction tool system employed in the powder metallurgy process for sealface production. However, a failure occurred in the compaction process, leading to the deformation of the component after the production of more than eleven sealfaces. This study investigates the ejector compaction tool system, with a specific focus on the cover lower dies, aiming to optimize the tool's construction. Employing the Pahl & Beitz design methodology, the research encompasses discussions with previous researchers, observation of existing tools, disassembly of current tools, and simulation analysis. Emphasizing static analysis to assess stress, deflection, and safety factor values, the research aims for a safety factor exceeding 2.00 in the redesigned cover lower dies. The optimal solution involves changing the material to AISI D2 with a hardness of 62 HRC, modifying the cover lower dies thickness by 13mm, and increasing springs and retained pins from 2 to 4 pieces. Consequently, the redesigned ejector compaction tool system is deemed operationally safe, signifying a successful improvement in its construction for enhanced reliability and performance.