Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENENTUAN DAERAH PROSPEK MINERALISASI MENGGUNAKAN METODE GEOKIMIA TANAH, DAERAH NANGA BANGIK, KECAMATAN BOYAN TANJUNG, KABUPATEN KAPUAS HULU, PROVINSI KALIMANTAN BARAT: DETERMINATION OF MINERALIZATION PROSPECTS BY SOIL GEOCHEMISTRY METHOD IN NANGA BANGIK AREA, BOYAN TANJUNG DISTRICT, KAPUAS HULU REGENCY, WEST KALIMANTAN PROVINCE Sulaeman; Ernowo; Widhiyatna, Denni
Buletin Sumber Daya Geologi Vol. 16 No. 3 (2021): Buletin Sumber Daya Geologi
Publisher : Pusat Sumber Daya Mineral Batubara dan Panas Bumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47599/bsdg.v16i3.334

Abstract

The tropical climate of Indonesia causes rock weathering. Soil from weathered rocks can be analyzed to determine the anomalies element to define the mineralization prospect areas using the geochemical methods. This study was carried out in the Nanga Bangik area with geological conditions favorable for mineralization. A total of 135 soil samples were collected from horizon B along ridge and spurs with sample intervals 75 - 100 meters. All samples were analyzed at the laboratory of the Center for Mineral Coal and Geothermal Resources in Bandung. Geochemical analysis was conducted using the Atomic Absorption Spectroscopy method, for the elements of Cu, Pb, Zn, Fe, Mn, Ag, and Au. Statistical distribution analysis, threshold calculation using mean+2SDEV and Median+2MAD and correlation between Factor Analysis were combined to determine the anomalies areas. Based on the calculation of the threshold using two different statistical methods, several anomalous values and groups of three factors were obtained: Factor 1: Pb-Fe-Zn-Ag Factor 2: Mn-Cu and Factor 3 in the form of element Au which was interpreted by the presence of metal mineralization. Three mineralization prospect areas were found in Bukit Empajak, Bukit Pirang and Bukit Limau.
DERAJAT LATERITISASI DAN PENGAYAAN UNSUR FE-NI-CO PADA BATUAN HARSBURGIT DI PULAU SEBUKU, KALIMANTAN SELATAN: DEGREE OF LATERITIZATION AND ENRICHMENT OF FE-NI-CO ELEMENTS IN HARSBURGITE ROCKS ON SEBUKU ISLAND, SOUTH KALIMANTAN Fasya Zahra Fauziyyah Ramdani; Putri Ramadhani, Ayumi Hana; Cahyadi, Andhi; Ernowo; Widodo, Wahyu
Buletin Sumber Daya Geologi Vol 18 No 3 (2023): Buletin Sumber Daya Geologi
Publisher : Pusat Sumber Daya Mineral Batubara dan Panas Bumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47599/bsdg.v18i3.411

Abstract

The tropical climate in Indonesia causes a high level of chemical weathering or lateritization of ultramafic rocks which results in the enrichment of economic elements such as Fe, Ni and Co. These elements accumulate in the limonite and saprolite zones. This research was conducted on Sebuku Island which composed of ultramafic rocks, especially harzburgite. This study aims to determine the effect of the degree of lateritization in the limonite, saprolite and bedrock zones on the enrichment of economic elements. A number of 95 samples collected from 9 drill holes and analyzed using XRF to determine the main elements and economic elements. The degree of lateritization is calculated from the SiO2 content divided by the total accumulation of SiO2, Al2O3 and Fe2O3 resulting the S/SAF index which describes the intensity of the chemical reaction. The lowest value of the S/SAF index indicates a higher degree of lateritization. Each limonite, saprolite and bedrock zone has S/SAF index values ​​ranging from 0.16 to 58 (strong lateritization), 0.27 to 0.85 (medium lateritization-kaolinization) and 0.77 to 1.24 (mother rock). The zone with a strong degree of lateritization contains Fe levels between 36% to 51%, Ni 0.80% to 1.38% and Co 0.07% to 1.17%. The bedrock contains 4.86% to 7.99% Fe, 0.20% to 1.76% Ni and 0.005% to 0.015% Co. The degree of lateritization in the limonite zone is higher than the saprolite and bedrock zones. This is caused by the decomposition of silica minerals to form the iron and aluminum oxide-hydroxide bearing minerals. The degree of lateritization has a positive correlation with the enrichment of Fe and Co. However, the distribution of high Ni not correlated with the index of lateritization.