Pebrianto, Wahyu
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Partial half fine-tuning for object detection with unmanned aerial vehicles Pebrianto, Wahyu; Mudjirahardjo, Panca; Pramono, Sholeh Hadi
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp399-407

Abstract

Deep learning has shown outstanding performance in object detection tasks with unmanned aerial vehicles (UAVs), which involve the fine-tuning technique to improve performance by transferring features from pre-trained models to specific tasks. However, despite the immense popularity of fine-tuning, no works focused on to study of the precise fine-tuning effects of object detection tasks with UAVs. In this research, we conduct an experimental analysis of each existing fine-tuning strategy to answer which is the best procedure for transferring features with fine-tuning techniques. We also proposed a partial half fine-tuning strategy which we divided into two techniques: first half fine-tuning (First half F-T) and final half fine-tuning (Final half F-T). We use the VisDrone dataset for the training and validation process. Here we show that the partial half fine-tuning: Final half F-T can outperform other fine-tuning techniques and are also better than one of the state-of-the-art methods by a difference of 19.7% from the best results of previous studies.