Claim Missing Document
Check
Articles

Found 2 Documents
Search

Electric Plan Rizky, Adhinda Septhia Nur; Al Fathin, Deva Shofa; Nurapriliansyah, Helmi; S., Nadia Difa’i Mutmainah; Suwandi, Tri; Rusdiana, Dadi
Indonesian Journal of Multidiciplinary Research Vol 1, No 1 (2021): IJOMR: VOLUME 1, ISSUE 1, 2021
Publisher : Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (561.461 KB) | DOI: 10.17509/ijomr.v1i1.33661

Abstract

Energy consumption that still use fossil energy or non-renewable energy has a negative impact on the environment. Alternative energy innovations or renewable energy have also begun to be developed to replace fossil energy or non-renewable energy. This study aims to determine whether other types of plants that wasn’t used by Helder could also generate electricity and reduce the impact of non-renewable energy. This research was conducted by placing electrodes on the soil close to the roots of the plants. In this experiment, we used 3 types of plants that are common at home, namely Chrysanthemum, Orchid, and Red Begonia. The results show that there is indeed a very small flow of electricity, this could possibly due to various factors. If this experiment continues to develop, the possibility of green-electrical energy could be more than just a dream. Based on experiments using a prototype that we have done, the three plants have the potential to produce electric currents in the range of 0.02mA-0.65mA.
Pemodelan Sistem Monitoring Kualitas Udara Pintar Berbasis Internet of Things dengan Pendekatan Machine Learning Nugroho, Eddy Prasetyo; Anisyah, Ani; Al Fathin, Deva Shofa; Amadudin, Muhammad Nur Yasin; Ramadhani, Muhammad Satria; Yosafat
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 2: April 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2025129195

Abstract

Penelitian ini bertujuan untuk merancang arsitektur model sistem pemantauan kualitas udara di Kota Bandung menggunakan empat parameter polutan utama: PM1.0, PM2.5, PM10, dan CO. Sistem ini dirancang dengan memanfaatkan algoritma Long Short-Term Memory (LSTM) untuk memprediksi kualitas udara harian berdasarkan data historis. Fokus penelitian meliputi perancangan desain arsitektur sistem, model data, dan metode prediksi, yang disusun berdasarkan analisis arsitektur sebelumnya serta kajian literatur. Salah satu elemen penting dan kebaruan dalam penelitian ini adalah penggunaan sensor ZH03B untuk pemantauan kualitas udara secara real-time yang memberikan solusi hemat biaya dan dapat diandalkan. Kombinasi antara sensor real-time dan algoritma LSTM menghasilkan tingkat akurasi prediksi kualitas udara sebesar 88%. Hasil evaluasi model menunjukkan nilai Root Mean Square Error (RMSE) sebesar 2,68 yang mencerminkan kinerja prediksi yang baik. Selain itu, pendekatan ini memberikan peningkatan signifikan dibandingkan metode konvensional yang sering kali kurang responsif terhadap perubahan kualitas udara secara dinamis. Penelitian ini memberikan dasar yang kuat untuk pengembangan sistem monitoring kualitas udara yang lebih akurat dan adaptif. Arsitektur yang diusulkan dapat menjadi acuan untuk pengembangan sistem monitoring kualitas udara di masa depan.   Abstract   This research aims to design the architecture of an air quality monitoring system model in Bandung City using four main pollutant parameters: PM1.0, PM2.5, PM10, and CO. The system is designed by utilising the Long Short-Term Memory (LSTM) algorithm to predict daily air quality based on historical data. The focus of the research includes the design of the system architecture, data model, and prediction method, which were developed based on previous architecture analysis and literature review. One important element and novelty in this research is the use of the ZH03B sensor for real-time air quality monitoring which provides a cost-effective and reliable solution. The combination of the real-time sensor and the LSTM algorithm resulted in an air quality prediction accuracy rate of 88%. The model evaluation results show a Root Mean Square Error (RMSE) value of 2.68 which reflects good prediction performance. In addition, this approach provides a significant improvement over conventional methods that are often less responsive to dynamic changes in air quality. This research provides a solid foundation for the development of a more accurate and adaptive air quality monitoring system. The proposed architecture can serve as a reference for the development of future air quality monitoring systems.