Budiman Putra Asmaur Rohman
Unknown Affiliation

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : EMITTER International Journal of Engineering Technology

Power Generation Forecasting of Dual-Axis Solar Tracked PV System Based on Averaging and Simple Weighting Ensemble Neural Networks Rohman, Budiman Putra Asmaur; Hilman, Catur; Tridianto, Erik; Ariwibowo, Teguh Hady
EMITTER International Journal of Engineering Technology Vol 6, No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (12.589 KB) | DOI: 10.24003/emitter.v6i2.341

Abstract

Solar power is a renewable energy interest many researchers around the world to be explored for human life beneficial especially for electric power generation. Photovoltaic (PV) is one of technology developed massively to exploit the solar power for this purpose. However, its performance is very sensitive to environmental condition such as solar irradiance, weather, and climatic behavior. Thus, the hybrid power generation systems are developed to solve this output uncertainty problem. To support this such hybrid system, this paper proposes an ensemble neural network based forecaster of the power output of PV systems which will lead an efficient power management. The object of this research is the PV systems equipped with two axes automated solar tracking with peak power 10Wp. The proposed ensemble forecaster model employs four multi-layer perceptron neural networks with two hidden layers as base forecasters while the input number of historical data is varied in order to exploit the forecaster diversity. The final prediction is calculated both by conventional averaging and simple weighting optimized by the least square fitting technique. According to the research results, the both proposed approaches provide low error rate. Moreover, in term of comparison, the ensemble model with averaging combining technique gives the highest accuracy comparing to the other ensemble and conventional neural network structures.
Power Generation Forecasting of Dual-Axis Solar Tracked PV System Based on Averaging and Simple Weighting Ensemble Neural Networks Budiman Putra Asma'ur Rohman; Catur Hilman; Erik Tridianto; Teguh Hady Ariwibowo
EMITTER International Journal of Engineering Technology Vol 6 No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (12.589 KB) | DOI: 10.24003/emitter.v6i2.341

Abstract

Solar power is a renewable energy interest many researchers around the world to be explored for human life beneficial especially for electric power generation. Photovoltaic (PV) is one of technology developed massively to exploit the solar power for this purpose. However, its performance is very sensitive to environmental condition such as solar irradiance, weather, and climatic behavior. Thus, the hybrid power generation systems are developed to solve this output uncertainty problem. To support this such hybrid system, this paper proposes an ensemble neural network based forecaster of the power output of PV systems which will lead an efficient power management. The object of this research is the PV systems equipped with two axes automated solar tracking with peak power 10Wp. The proposed ensemble forecaster model employs four multi-layer perceptron neural networks with two hidden layers as base forecasters while the input number of historical data is varied in order to exploit the forecaster diversity. The final prediction is calculated both by conventional averaging and simple weighting optimized by the least square fitting technique. According to the research results, the both proposed approaches provide low error rate. Moreover, in term of comparison, the ensemble model with averaging combining technique gives the highest accuracy comparing to the other ensemble and conventional neural network structures.