Saputra, Aprizal
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Adsorbent-based biogas quality analysis through purification process Afisna, Lathifa Putri; Verdia, V Daniel; Syaukani, Muhammad; Saputra, Aprizal
Jurnal Pendidikan Teknologi Kejuruan Vol 5 No 3 (2022): Regular Issue
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jptk.v5i3.27623

Abstract

Biogas is a raw material utilized to produced biogas. Biogas is renewable energy source produced by the anaerobic activity of organic matter through the fermentation process. Quality of biogas is determined by its main composition, such as methane (CH4). In addition, the composition of biogas also contains impurities such as unburnt carbon dioxide (CO2) so that it reduces the heating value, hydrogen sulfide (H2S) and water vapor (H2O) which are corrosive as well as Nitrogen (N2). Adsorption method on the impurity compositions can be used to improve biogas quality. This research used a column purifier containing four adsorbents in the form of calcium hydroxide Ca(OH)2, iron gram (Fe2(O3)), zeolite and activated carbon with three volume variations 600 cm3, 900 cm3 and 1200 cm3. The results of biogas testing using gas chromatography showed that the best quality obtained from the 1200 cm3 volume of adsorbent. Methane content was increased up to 17.985% and the impurity gases were decreased, such as carbon dioxide in as much as 18.15%, hydrogen sulfide and water vapor in as much as 0.182%. The heat produced by unpurified biogas was 1518.312 kJ/m3 and the highest heating value after purification was 2108.22 kJ/m3. The biogas combustion resulted in a dominant blue flame color.The most optimum effectiveness of the technology resulted in an increase of the methane content up to 64.275%. Based on this research, the utilization of column purifier with the adsorption method was able to improve the quality of biogas
Numerical analysis of flow characteristics of the oil-water mixture in stratified-annular horizontal pipe Erizon, Nelvi; Jasman, Jasman; Irzal, Irzal; Aldio, Muhammad Fikhri; Saputra, Aprizal; Tin, Chau Trung
Teknomekanik Vol. 5 No. 2 (2022): Regular Issue
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (620.401 KB) | DOI: 10.24036/teknomekanik.v5i2.14572

Abstract

The loss of oil fluid flow in the piping system in the petroleum industry due to friction is the cause of low efficiency. To reduce friction loss, the viscosity of petroleum can be lowered by adding water as a mixture. Actually, the flow loss in a piping system is influenced by several factors including flow pattern, fluid type, flow velocity, flow pressure and pipe diameter. This study aims to determine the effect of flow patterns on changes in velocity in the two-phase flow of oil and water in a piping system. This numerical analysis research was carried out using Fluent 6.2 software with variations in the velocity of the oil-water mixture: 0.2, 0.4 and 0.6 m/s. The simulation results show that the greatest pressure loss occurs at a fluid velocity of 0.6 m/s where the flow is stratified mixed. While the smallest pressure loss at a mixture velocity of 0.2 m/s when the flow is stratified smooth. From the results of the study, it can be concluded that the increase in fluid flow velocity has a positive correlation with the increase in the value of flow losses in the pipe.