Talasemia merupakan kelainan darah turunan yang menyebabkan rusaknya rantai hemoglobin pada eritrosit penderita. Pada kasus talasemia minor, pasien hanya menjadi pembawa gen talasemia dan tidak bergejala. Hal ini menyebabkan sedikitnya penderita talasemia minor yang terdeteksi. Saat ini, ahli hematologi harus menghitung eritrosit abnormal secara manual berdasarkan  bentuk, warna, dan tekstrur sel. Untuk itu, banyak penelitian yang memanfaatkan citra eritrosit untuk melakukan mengklasifikasi keabnormalan pada citra eritrosit secara otomatis. Namun, jumlah data yang terbatas menyebabkan salah satu jenis keabnormalan yaitu sel pensil belum terklasifikasi pada penelitian sebelumnya. Tujuan dari penelitian ini adalah mengatasi kendala tersebut dengan melakukan klasifikasi secara bertingkat dimana pada tahapan klasifikasi pertama sel pensil dikelompokkan kepada sel yang mirip, yaitu sel eliptosis terlebih dahulu. Penelitian ini menggunakan klasifier Convolutional Neural Network (CNN) pada proses klasifikasi pertama dan Support Vector Machine (SVM) pada proses klasifikasi kedua. Hasil eksperimen menujukkan klasifier CNN dengan arsitektur MiniVGGNet dan berhasil mengkasifikasi citra eritrosit ke dalam delapan kelas dengan nilai akurasi 96,05%, presisi 96,00%, sensitivitas 96,05%, dan F1 score 95,95%. Klasifier SVM Polinomial dengan kombinasi fitur geometris yang terdiri dari eccentricity, compactness, circularity, dan rasio sel berhasil mengklasifikasi sel pensil dengan nilai presisi 100,00%, sensitivitas 100,00%, dan F1 score 100,00%.