Claim Missing Document
Check
Articles

Found 3 Documents
Search

SIMULASI DINAMIKA MOLEKUL FENOMENA ADSORPSI DI-(2-ETILHEKSIL)FTALAT (DEHP) PADA MINERAL MONTMORILONIT Umma, Reza Roisatul; Zulfikar, Muhammad Ali; Ledyastuti, Mia
AMINA Vol 2 No 3 (2020): December 2020
Publisher : Department of Chemistry, Faculty of Science and Technology, UIN Ar-Raniry

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22373/amina.v2i3.1424

Abstract

Senyawa di(2-etilheksil) ftalat (DEHP) merupakan salah satu polutan yang ditetapkan oleh European Union (EU) dan World Health Organization (WHO) ke dalam daftar polutan utama dan dianggap paling bermasalah bagi kesehatan manusia yaitu dapat menimbulkan gangguan sistem endokrin, sistem saraf, dan hepatotoksik. DEHP digunakan sebagai plasticizer terutama pada polivinil klorida (PVC) yang hampir 50% mengandung DEHP. Senyawa DEHP tidak terikat secara kovalen dengan produknya sehingga mudah terlepas dari produk dan dapat memasuki lingkungan bebas. Jumlah DEHP di lingkungan bebas perlu dikendalikan dan salah satu metode yang sederhana dan efektif adalah adsorpsi. Pada penelitian ini dilakukan adsorpsi dengan pendekatan molekuler, yaitu simulasi dinamika molekul menggunakan perangkat lunak GROMACS. Penelitian ini bertujuan untuk membandingkan adsorpsi DEHP pada montmorilonit dan montmorilonit termodifikasi BDED atau CTMA yang kemudian disebut sebagai organo-montmorilonit, serta menentukan kondisi optimum sistem adsorpsi DEHP. Berdasarkan hasil simulasi, konsentrasi awal (C0) DEHP 0,044 mol/L menghasilkan adsorpsi maksimum yaitu sebanyak 3 molekul DEHP teradsorpsi (77,5%). Saat C0 DEHP dinaikkan menjadi 0,088 mol/L, tidak ada molekul DEHP yang teradsorpsi pada permukaan MMT. Sementara itu, pada MMT (1 lapis) termodifikasi BDED dengan jumlah molekul BDED 0,24 KTK, persentase adsorpsi mengalami peningkatan menjadi 44%. Hal ini menunjukkan bahwa penambahan surfaktan kationik berhasil meningkatkan persentase adsorpsi DEHP.
The Potential of Nanocellulose Acetate as Surfactant for Water-Vegetable Oil Systems Ibrahim, Ikhsan; Ledyastuti, Mia
Jurnal Kimia Valensi Jurnal Kimia VALENSI Volume 9, No. 1, May 2023
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v9i1.29467

Abstract

Indonesia, as an agricultural country, has a variety of abundant plants. Cellulose is a component in plants that can be modified to increase its economic value. Resizing cellulose to nanocellulose and modification of nanocellulose to nanocellulose acetate can increase its potential as a surfactant. Resizing cellulose can be done using the strong acid hydrolysis method. An acetic anhydride reagent was utilized to convert the surface hydroxyl functional group into acetyl. The successful production and modification of nanocellulose were confirmed using fourier transform infrared and particle size analysis characterization. The infrared absorption spectrum of cellulose and nanocellulose showed no difference in peaks. Particle size distribution showed that nanocellulose I (CNC I) and nanocellulose II (CNC II) has sizes of 142 nm and 319 nm, respectively. The property of nanocellulose molecules in an oil-water system was simulated using molecular dynamics with GROMACS 2020.6 software. Appropriate trends can be seen in the interfacial tension of water-vegetable oil systems. The value of interfacial tension decreases with the addition of nanocellulose acetate compared to the addition of nanocellulose. With the agreement between the experimental and computational results, nanocellulose acetate can act as a surfactant.
Computational Study on Apoptosis-Inducing Factor (AIF)-Mediated Modulation of Menadione using Molecular Docking and Parametrized Quantum Methods Listyawati, Muklisatum; Hildayani, Suci Zulaikha; Ledyastuti, Mia; Warganegara, Fida Madayanti; Martoprawiro, Muhamad Abdulkadir
Molekul Vol 20 No 3 (2025)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2025.20.3.12428

Abstract

ABSTRACT. Apoptosis-inducing factor (AIF) is a protein that is crucial for apoptosis which its dysregulation has been connected to the emergence of cancer. Mitochondria are organelles that in healthy cells function as energy factories that are important for maintaining cell life. AIF is located in the mitochondrial intermembrane space with active sites, namely FAD and NADH. Meanwhile in the recent studies, quinone compounds have shown potential as anti-cancer agents by targeting mitochondrial function, but the mechanism is still unclear. In this study, we used computational methods, including molecular docking and the Divide-and-Conquer Density Functional Tight-Binding Molecular Dynamics (DCDFTBMD) method, a type of parametrized quantum calculation, to investigate the interaction between mitochondrial AIF and menadione, as a quinone compound with anticancer potential. From the calculation result, AIF interaction with menadione was stronger in the FAD domain than in NADH. The partial charges of the ligands before and after the interactions were calculated using the DCDFTBMD technique, and the results show that the charge in the bonding area becomes more negative. This indicates the strengthening of electrostatic interactions through polarization effects in the bonding molecule. Additionally, it was discovered through this study's data that all ligands interacted with the ser-175 residue in the AIF protein. These residues are modulated by the involvement of AIF in the cell death process. From this study, it can be concluded that menadione has the potential as an anticancer agent through the AIF modulation mechanism. Keywords: AIF, enzyme-catalyzed modulation, docking, quantum parametrization, menadione