Rhazi, Kaoutar Senhaji
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Stirling engine multi-objective optimization using a genetic algorithm Taki, Oumaima; Rhazi, Kaoutar Senhaji; Mejdoub, Youssef
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i1.pp623-630

Abstract

With the growing demand of energy globally, the actual worrying state of the earth’s finite resources, namely fossil fuels, opens up the scope of energy researches to innovative and efficient solutions. Stirling engine has been an interesting subject of study since its invention, and many studies dealt with Stirling engine efficiency with attempts to optimize it in order to have a proper use of the engine in the real world, depending on the use cases. Stirling engine is an external combustion engine with a theoretical efficiency equivalent to that of Carnot. Alongside the global awareness to use efficient and less resource consuming solutions, there has been a spiking growth in the set of tools that are conceived to achieve that; specifically in the machine learning area. Among the various available algorithms, the one used in the hereby study is the non-sorted genetic algorithm II, which falls into the genetic algorithms category. This algorithm is well suited for multi-objective optimization problems; it consists of selecting the best design parameters that are contained in predefined upper and lower bounds, based on multiple objective functions.
Digital pseudo-random modulation: a key to EMI reduction in EVS boost converters M'barki, Zakaria; Salih, Ali Ait; Mejdoub, Youssef; Rhazi, Kaoutar Senhaji
International Journal of Applied Power Engineering (IJAPE) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v13.i3.pp594-602

Abstract

Pseudo-random position pulse modulation (RPPM) technique can be implemented either analogically using pseudo-random binary sequences (PRBS) to generate a pulse-width modulation (PWM) control signal or digitally through an Arduino Uno board. It plays a critical role in mitigating conducted electromagnetic emissions (EMI) in boost converters dedicated to electric vehicle systems (EVS) applications. The digital implementation offers a significant advantage by enabling a substantial widening of the frequency spectrum of the control signal. This expanded spectral range results in a noticeable reduction in emitted electromagnetic interference (EMI), making the digital method the preferred choice. The increased spectral bandwidth effectively mitigates EMI, which is particularly advantageous for EMI-sensitive EVS systems. In conclusion, the digital pseudo-random modulation approach, facilitated by Arduino Uno, proves to be more effective in reducing EMI in EVS boost converters. Its capability to broaden the control signal's frequency spectrum leads to a favorable reduction in emitted EMI, ultimately enhancing electromagnetic compatibility and overall system performance.