Claim Missing Document
Check
Articles

Found 5 Documents
Search

Stirling engine multi-objective optimization using a genetic algorithm Taki, Oumaima; Rhazi, Kaoutar Senhaji; Mejdoub, Youssef
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i1.pp623-630

Abstract

With the growing demand of energy globally, the actual worrying state of the earth’s finite resources, namely fossil fuels, opens up the scope of energy researches to innovative and efficient solutions. Stirling engine has been an interesting subject of study since its invention, and many studies dealt with Stirling engine efficiency with attempts to optimize it in order to have a proper use of the engine in the real world, depending on the use cases. Stirling engine is an external combustion engine with a theoretical efficiency equivalent to that of Carnot. Alongside the global awareness to use efficient and less resource consuming solutions, there has been a spiking growth in the set of tools that are conceived to achieve that; specifically in the machine learning area. Among the various available algorithms, the one used in the hereby study is the non-sorted genetic algorithm II, which falls into the genetic algorithms category. This algorithm is well suited for multi-objective optimization problems; it consists of selecting the best design parameters that are contained in predefined upper and lower bounds, based on multiple objective functions.
Digital pseudo-random modulation: a key to EMI reduction in EVS boost converters M'barki, Zakaria; Salih, Ali Ait; Mejdoub, Youssef; Rhazi, Kaoutar Senhaji
International Journal of Applied Power Engineering (IJAPE) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v13.i3.pp594-602

Abstract

Pseudo-random position pulse modulation (RPPM) technique can be implemented either analogically using pseudo-random binary sequences (PRBS) to generate a pulse-width modulation (PWM) control signal or digitally through an Arduino Uno board. It plays a critical role in mitigating conducted electromagnetic emissions (EMI) in boost converters dedicated to electric vehicle systems (EVS) applications. The digital implementation offers a significant advantage by enabling a substantial widening of the frequency spectrum of the control signal. This expanded spectral range results in a noticeable reduction in emitted electromagnetic interference (EMI), making the digital method the preferred choice. The increased spectral bandwidth effectively mitigates EMI, which is particularly advantageous for EMI-sensitive EVS systems. In conclusion, the digital pseudo-random modulation approach, facilitated by Arduino Uno, proves to be more effective in reducing EMI in EVS boost converters. Its capability to broaden the control signal's frequency spectrum leads to a favorable reduction in emitted EMI, ultimately enhancing electromagnetic compatibility and overall system performance. 
Design of a miniaturized patch antenna for 2.45/5.8 GHz applications Laabadli, Abdel-Ali; Mejdoub, Youssef; Elamri, Abdelkebir; Tarbouch, Mohamed
International Journal of Advances in Applied Sciences Vol 14, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v14.i1.pp101-110

Abstract

A miniaturized antenna for 2.45 and 5.8 GHz applications is presented in this paper. The designed antenna is based on two metamaterial unit cells which resonate at 2.45 and 5.8 GHz. They are etched on the ground plane of the conventional patch antenna that resonates at 3.38 GHz. The substrate and metal chosen in this design are respectively, Epoxy FR-4 (with permittivity 4.4, loss tangent of 0.025, and thickness of 1.6 mm) and copper annulled. The simulation of the antenna was done with a CST solver. The proposed miniaturized antenna has two main bands: the inferior band 2.45 GHz and the superior band 5.8 GHz. On the inferior band, the gain and bandwidth are 1.39 dB and 76.4 MHz, and on the superior band, they are 2.05 dB and 160 MHz.
Enhancing energy efficiency with poncebloc and hemp wool: a Moroccan case study Boukioud, Yasser; Senhaji Rhazi, Kaoutar; Mejdoub, Youssef
International Journal of Advances in Applied Sciences Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v13.i4.pp970-980

Abstract

In recent years, the building sector's energy consumption in Morocco has been steadily increasing, highlighting the urgent need for sustainable building practices. Optimizing building parameters and the development of new insulation materials have become critical areas of research due to the significant energy losses associated with traditional insulation materials. Insulation materials can be a simple and cost-effective way to improve building energy efficiency and reduce environmental impact. Unfortunately, not all of these materials exhibit favorable thermal characteristics such as conductivity or heat capacity. Some involve complex production processes, while others are prohibitively expensive or toxic. At this juncture, the strategy of integrating ecological materials with insulation materials to enhance thermal performance holds considerable promise. This paper investigates the impact of the integration of poncebloc and hemp wool in inside temperature and annual consumption of a building construction numerically under a transient simulation program (TRNSYS). The results show that by using these two materials along with double-glazed windows, energy savings ranging from 50-55% can be achieved.
Strategic electromagnetic interferences suppression in boost converters: zero-switch techniques M'barki, Zakaria; Ait Salih, Ali; Mejdoub, Youssef; Senhaji Rhazi, Kaoutar
International Journal of Advances in Applied Sciences Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v13.i2.pp340-350

Abstract

This article delves into the growing demand for efficient power conversion technologies accompanying the rise in electric vehicle (EV) adoption. Boost converters, essential for increasing the battery pack voltage to propel EV motors, pose a challenge due to the electromagnetic interference (EMI) generated by the high switching frequency of power devices. To address this issue, practitioners employ zero-voltage switching (ZVS) and zero-current switching (ZCS) techniques. In this comparative study, we systematically evaluate the effectiveness of these soft switching techniques in reducing conducted EMI in boost converters designed for EV applications. The results illuminate the potential of both ZVS and ZCS in significantly mitigating EMI emissions when compared to conventional hard-switching methods. Notably, ZVS soft switching emerges as more efficient and effective, particularly under higher loads, while ZCS soft switching excels in reducing EMI at lighter loads. In conclusion, the study asserts that ZVS soft switching presents a more promising solution for curtailing conducted EMI in boost converters for EV applications, particularly in high-load scenarios. However, it underscores the importance of considering specific operational conditions when deciding between the two techniques.