Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pendeteksian Jumlah Bangunan Berbasis Citra Menggunakan Metode Deep Learning Bagaskara, Radhinka; Rizkita, Alya Khairunnisa; Fernandes, Rivaldo; Yulita, Winda
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 6, No 1 (2022): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v6i1.428

Abstract

Counting residential houses is one of the problems faced when determining population density level in Indonesia, therefore it’s required to find a method that’s able to solve said problem. Deep learning method is capable of creating a prediction model for detecting the number of buildings from an image. The deep learning prediction model is created with MobileNetv2 application. The prediction model is trained by using a dataset from Kaggle. The prediction model is tested using satellite photos taken from Way Kandis-Sukarame, Bandar Lampung. The result is a deep learning prediction model with accuracy of 91.30% for SenseFly and 10.34% for Way Kandis dataset. The research can be further improved by using a better training and testing dataset
Pendeteksian Jumlah Bangunan Berbasis Citra Menggunakan Metode Deep Learning Bagaskara, Radhinka; Rizkita, Alya Khairunnisa; Fernandes, Rivaldo; Yulita, Winda
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 6, No 1 (2022): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v6i1.428

Abstract

Counting residential houses is one of the problems faced when determining population density level in Indonesia, therefore it’s required to find a method that’s able to solve said problem. Deep learning method is capable of creating a prediction model for detecting the number of buildings from an image. The deep learning prediction model is created with MobileNetv2 application. The prediction model is trained by using a dataset from Kaggle. The prediction model is tested using satellite photos taken from Way Kandis-Sukarame, Bandar Lampung. The result is a deep learning prediction model with accuracy of 91.30% for SenseFly and 10.34% for Way Kandis dataset. The research can be further improved by using a better training and testing dataset
Development of YOLO-Based Mobile Application for Detection of Defect Types in Robusta Coffee Beans Nugroho, Eko Dwi; Verdiana, Miranti; Algifari, Muhammad Habib; Afriansyah, Aidil; Firmansyah, Hafiz Budi; Rizkita, Alya Khairunnisa; Winarta, Richard Arya; Gunawan, David
Journal of Applied Informatics and Computing Vol. 9 No. 1 (2025): February 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i1.8886

Abstract

Improving the quality of Robusta coffee beans is a crucial challenge in the coffee industry to ensure that consumers receive high-quality products. However, the identification of defects in coffee beans is still largely performed manually, making the process error-prone and time-consuming. This study aims to develop a YOLO-based mobile application to detect defects in Robusta coffee beans quickly and accurately. The method employed in this study is YOLO, a deep learning-based object detection algorithm known for its real-time object detection capabilities. The application was tested using a dataset of Robusta coffee beans containing various defects, such as broken, black, and wrinkled beans. The test results indicate that the application achieves high detection accuracy, with the black bean class achieving 95.3% accuracy, while the moldy or bleached bean class records the lowest accuracy at 62.2%. This application is expected to assist farmers and coffee industry stakeholders in improving the quality of Robusta coffee beans and enhancing the efficiency of the sorting process.