Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analisis Konsumsi Energi Listrik Pelanggan Dan Biaya Pokok Produksi Penyediaan Energi Listrik dengan Machine Learning Nugraha, Raditya Hari; Yuwono, Eko; Prasetyohadi, Latif; B, Yanuardhi Arief; Patria, Harry
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 6, No 1 (2022): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v6i1.424

Abstract

PT PLN (Persero) during the Covid-19 pandemic was one of the companies whose sales growth was affected by the decline in electricity consumption in several sectors. Another condition is that several power plant and substation construction projects have fulfilled the realization commitment to the RUPTL from PT PLN (Persero). This has resulted in PT PLN (Persero) being faced with an over supply condition between power capacity and customer usage load. Realization of sales growth until July 2021 was 4.44% (144,788 TWh). Energy consumption in July 2021 was 20.55 TWh where the growth of kWh sales in July 2021 comparing with July 2020 began to show a recovery of +1.82%. The factor that most affected business and industrial growth was the manufacturing sector in Indonesia experiencing a slowdown/contraction as reflected in the PMI (Purchasing Managers Index) which decreased from 53.5 to 40.1. Growth is strongly influenced by consumer behavior in responding to government regulations, especially related to controlling the spread of Covid-19 in Indonesia in the form of restrictions on social activities (PSBB, PPKM, or Lockdown) which have been effectively implemented since April 2020 until now. Based on the analysis of the customer's electrical energy consumption data per industrial sector, as well as using technical data on the availability of power per electrical sub-system and the cost of producing electrical energy in an area, an evaluation model will be obtained that can be used in selecting the criteria for prospective customers who will be given program offers "SEMAKIN PRODUKTIF". By using "SEMAKIN PRODUKTIF" program data modeling, it is hoped that prospective customers will be given program offers so that they can be an opportunity to increase sales growth of electrical energy which is targeted to grow 6% in December 2021
Analisis Konsumsi Energi Listrik Pelanggan Dan Biaya Pokok Produksi Penyediaan Energi Listrik dengan Machine Learning Nugraha, Raditya Hari; Yuwono, Eko; Prasetyohadi, Latif; B, Yanuardhi Arief; Patria, Harry
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 6, No 1 (2022): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v6i1.424

Abstract

PT PLN (Persero) during the Covid-19 pandemic was one of the companies whose sales growth was affected by the decline in electricity consumption in several sectors. Another condition is that several power plant and substation construction projects have fulfilled the realization commitment to the RUPTL from PT PLN (Persero). This has resulted in PT PLN (Persero) being faced with an over supply condition between power capacity and customer usage load. Realization of sales growth until July 2021 was 4.44% (144,788 TWh). Energy consumption in July 2021 was 20.55 TWh where the growth of kWh sales in July 2021 comparing with July 2020 began to show a recovery of +1.82%. The factor that most affected business and industrial growth was the manufacturing sector in Indonesia experiencing a slowdown/contraction as reflected in the PMI (Purchasing Managers Index) which decreased from 53.5 to 40.1. Growth is strongly influenced by consumer behavior in responding to government regulations, especially related to controlling the spread of Covid-19 in Indonesia in the form of restrictions on social activities (PSBB, PPKM, or Lockdown) which have been effectively implemented since April 2020 until now. Based on the analysis of the customer's electrical energy consumption data per industrial sector, as well as using technical data on the availability of power per electrical sub-system and the cost of producing electrical energy in an area, an evaluation model will be obtained that can be used in selecting the criteria for prospective customers who will be given program offers "SEMAKIN PRODUKTIF". By using "SEMAKIN PRODUKTIF" program data modeling, it is hoped that prospective customers will be given program offers so that they can be an opportunity to increase sales growth of electrical energy which is targeted to grow 6% in December 2021
K-MEANS AND XGBOOST FOR CUSTOMER ELECTRICITY ACCOUNT PAYMENT BEHAVIOR ANALYSIS (CASE STUDY: PLN ULP PANAKKUKANG) Nugraha, Raditya Hari; Purwitasari, Diana; Raharjo, Agus Budi
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 20, No. 2, July 2022
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v20i2.a1132

Abstract

Revenue Acceleration from electricity account receivables is one of the energy companies' efforts to maintain cash flow so that they can carry out operational activities and carry out investment activities to develop company assets. Factors that influence electricity bill payment behavior include the location of consumers, the amount of the bill, payment point facilities located around consumers' homes, the use of digital technology as a media of payment, as well as consumer awareness and understanding regarding the time limit for paying electricity bills. Therefore, it is necessary to conduct an analysis so that the company can determine a special strategy for customers who have the potential to be in arrears in electricity bills. To get the characteristic of electricity bill payments, several previous studies have used various classification methods of machine learning such as random forest, nave bayes, SVM, CART, etc. to get the best accuracy. In this research, to increase the accuracy of the model, author using the cluster method with the k-means technique and combining it with the eXtreme Gradient Boosting (XGBOOST) classification method based on data on the characteristics of consumer electricity bill payments. In this study also used hyperparameter adjustment with hillclimbing, random search, and bayesian techniques to increase the accuracy of the model. The model simulation carried out in this thesis gives the result that the combination of the k-means cluster with the XGBoost classification and by adjusting the bayesian technique hyperparameters has a much better model accuracy rate with a value of 89.27% and an Area Under Curve (AUC) value of 0.92 when compared to gradient boosting method with an accuracy rate of only 74.76% and an AUC value of 0.75. Based on the simulation results on ULP Panakkukang customer data, it was found that the subsidy category customer group and customers who often experience power outages have a tendency to be in arrears on electricity bills.