p-Index From 2021 - 2026
6.816
P-Index
Claim Missing Document
Check
Articles

Optimasi Pembobotan pada Query Expansion dengan Term Relatedness to Query-Entropy based (TRQE) Ludviani, Resti; Hayati, Khadijah F.; Arifin, Agus Zainal; Purwitasari, Diana
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (297.228 KB)

Abstract

Abstract. An appropriate selection term for expanding a query is very important in query expansion. Therefore, term selection optimization is added to improve query expansion performance on document retrieval system. This study proposes a new approach named Term Relatedness to Query-Entropy based (TRQE) to optimize weight in query expansion by considering semantic and statistic aspects from relevance evaluation of pseudo feedback to improve document retrieval performance. The proposed method has 3 main modules, they are relevace feedback, pseudo feedback, and document retrieval. TRQE is implemented in pseudo feedback module to optimize weighting term in query expansion. The evaluation result shows that TRQE can retrieve document with the highest result at precission of 100% and recall of 22,22%. TRQE for weighting optimization of query expansion is proven to improve retrieval document.     Keywords: TRQE, query expansion, term weighting, term relatedness to query, relevance feedback Abstrak..Pemilihan term yang tepat untuk memperluas queri merupakan hal yang penting pada query expansion. Oleh karena itu, perlu dilakukan optimasi penentuan term yang sesuai sehingga mampu meningkatkan performa query expansion pada system temu kembali dokumen. Penelitian ini mengajukan metode Term Relatedness to Query-Entropy based (TRQE), sebuah metode untuk mengoptimasi pembobotan pada query expansion dengan memperhatikan aspek semantic dan statistic dari penilaian relevansi suatu pseudo feedback sehingga mampu meningkatkan performa temukembali dokumen. Metode yang diusulkan memiliki 3 modul utama yaitu relevan feedback, pseudo feedback, dan document retrieval. TRQE diimplementasikan pada modul pseudo feedback untuk optimasi pembobotan term pada ekspansi query. Evaluasi hasil uji coba menunjukkan bahwa metode TRQE dapat melakukan temukembali dokumen dengan hasil terbaik pada precision  100% dan recall sebesar 22,22%.Metode TRQE untuk optimasi pembobotan pada query expansion terbukti memberikan pengaruh untuk meningkatkan relevansi pencarian dokumen.Kata Kunci: TRQE, ekspansi query, pembobotan term, term relatedness to query, relevance feedback
Aturan Asosiasi Dengan Standar Storet Pada Model Prediksi Parameter Pendukung Uji Kualitas Air Baku Purwitasari, Diana; Putri, Oktaviandra Pradita; Khotimah, Wijayanti Nurul
Journal of Information Systems Engineering and Business Intelligence Vol 1, No 1 (2015): April
Publisher : Program Studi Sistem Informasi, Fakultas Sains dan Teknologi, Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (445.465 KB)

Abstract

Abstrak—Uji laboratorium tentang kualitas air baku pada penyediaan dan pengolahan air bersih memperhatikan parameter air terkait faktor fisika, kimia dan biologi. Analisis kualitas air di laboratorium membutuhkan waktu. Usulan sistem akan mempercepat waktu dengan menganalisis catatan dataparameter air yang ada dalam rekam data PDAM. Aturan asosiasi pada sistem digunakan untuk melihat hubungan antara parameter air yang didahului praproses dengan mengubah data numerik ke data kategorikal berdasarkan standar STOrage and RETrievalData Warehouse (STORET).Selanjutnya model prediksi parameter air yang dihasilkan dari data belajar akan diserderhanakan terlebih dahulu sebelum validasi model dengan data uji. Pengujian model menggunakan data belajar menunjukkan rata-rata akurasi 70% dengan minimal support-confidence 30% data. Hasil model hubungan parameter air menggunakan rekam data PDAM dapat menjadi pendukung kebijakan di daerah tersebut dalam penyediaan dan pengolahan air bersih sebelum dilakukan uji kualitas laboratorium. Tanpa ada uji laboratorium beberapa nilai parameter faktor kimia tidak dapat diketahui. Meskipun demikian aturan yang dihasilkan sistem usulan tanpa uji laboratorium dapat memberikan akurasi 80%-95% dengan asumsi missing valuesnilai faktor kimiasetelah dicek manual dari narasumber pemilik data. Data uji coba menggunakan dataset kecil untuk mempermudah cek manual. Kata Kunci— prediksi kualitas air, aturan asosiasi, storetAbstrak—Raw Water (Air Baku) laboratory analysis is testing physical, chemical and bacteriological characteristicsof water to ensure that water supply is clean, safe and ready for drinking water quality. Analyzing raw water quality in laboratorium needs more time. The proposed system could shorten the laboratory processing time by analyzing daily water production log. Association ruleinthe proposed system was used to generate relation model of water characteristicsfrom the data log provided by local government owned water utilities (PDAM, Perusahaan Daerah Air Minum). The data was transformed first from numerical data into categorical data using STOrage and RETrieval Data Warehouse (STORET)standard.Generated model needs to be simplified because some prediction rules could have the same interpretation. The generated parameter prediction modelwas sufficient to be used as the supporting data for any local policy made related to water supply and sanitationwithout additional costs from standard lab testing of water quality. Some water quality values of chemical characteristics need lab testing. Given the missing values of several chemical characteristics, the generated parameter prediction model still could give better accuracy of 80%-95%. Since PDAM staffmanually validated the generated model, the experiments used small data set.  Keywords— water quality prediction, association rule, storet
Pelabelan Klaster Fitur Secara Otomatis pada Perbandingan Review Produk Rozi, Fahrur; Wijoyo, Satrio Hadi; Isanta, Septiyan Andika; Azhar, Yufis; Purwitasari, Diana
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 1, No 2 (2014)
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (711.042 KB)

Abstract

Abstrak Penggunaan review produk sebagai suatu sumber untuk mendapatkan informasi dapat dimanfaatkan untuk mengoptimalkan pemasaran suatu produk. Situs belanja online merupakan salah satu sumber yang dapat digunakan untuk pengambilan review produk. Analisa terhadap produk dapat dilakukan dengan membandingkan antara dua buah produk berbeda berdasarkan fitur produk tersebut. Fitur dari suatu produk didapatkan melalui ekstraksi fitur dengan metode double propagation. Fitur yang terdapat dalam sebuah review sangat banyak serta terdapat beberapa kata yang memiliki arti yang sama yang mewakili suatu fitur tertentu, sehingga diperlukan suatu pengelompokan terhadap fitur tersebut. Pengelompokan suatu fitur produk dapat dilakukan secara otomatis tanpa memperhatikan kamus kata, yaitu dengan menggunakan teknik clustering. Hierarchical clustering merupakan salah satu metode yang dapat digunakan untuk pengelompokan terhadap fitur produk. Pengujian dengan metode hierarchical clustering untuk pengelompokan fitur menunjukkan bahwa metode average linkage memiliki nilai recall dan f-measure yang paling tinggi. Sementara untuk pengujian pelabelan menunjukkan bahwa semantic similarity antar fitur lebih berpengaruh dari pada kemunculan fitur di dokumen. Kata kunci: clustering, fitur produk, pelabelan Abstract Product review can be used as a source for acquire information and to optimize the marketing of product. Online shopping sites are one of source that can be used to get product reviews. Analysis of the product can be done by comparing two different products based on product’s features. Features of a product can be obtained through extraction of features with double propagation method. In the product review there are many feature that can be found, and there are some words that have the same meaning which represents a particular feature, so we need a grouping on the feature. Hierarchical clustering is one method that can be used for grouping the features of the product. Based on testing, hierarchical clustering method for grouping feature indicate that the average linkage method has the highest recall and f-measure. As for testing in labeling indicates that the semantic similarity between features is more influential than the appearance of features in the document. Keywords: clustering, features of the product, labeling
MULTI-DOCUMENT SUMMARIZATION BASED ON SENTENCE CLUSTERING IMPROVED USING TOPIC WORDS Lukmana, Indra; Swanjaya, Daniel; Kurniawardhani, Arrie; Arifin, Agus Zainal; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 12, No 2, Juli 2014
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (292.988 KB) | DOI: 10.12962/j24068535.v12i2.a317

Abstract

Informasi dalam bentuk teks berita telah menjadi salah satu komoditas yang paling penting dalam era informasi ini. Ada banyak berita yang dihasilkan sehari-hari, tetapi berita-berita ini sering memberikan konten kontekstual yang sama dengan narasi berbeda. Oleh karena itu, diperlukan metode untuk mengumpulkan informasi ini ke dalam ringkasan sederhana. Di antara sejumlah subtugas yang terlibat dalam peringkasan multi-dokumen termasuk ekstraksi kalimat, deteksi topik, ekstraksi kalimat representatif, dan kalimat rep-resentatif. Dalam tulisan ini, kami mengusulkan metode baru untuk merepresentasikan kalimat ber-dasarkan kata kunci dari topic teks menggunakan Latent Dirichlet Allocation (LDA). Metode ini terdiri dari tiga langkah dasar. Pertama, kami mengelompokkan kalimat di set dokumen menggunakan kesamaan histogram pengelompokan (SHC). Selanjutnya, peringkat cluster menggunakan klaster penting. Terakhir, kalimat perwakilan yang dipilih oleh topik diidentifikasi pada LDA. Metode yang diusulkan diuji pada dataset DUC2004. Hasil penelitian menunjukkan rata-rata 0,3419 dan 0,0766 untuk ROUGE-1 dan ROUGE-2, masing-masing. Selain itu, dari pembaca prespective, metode kami diusulkan menyajikan pengaturan yang koheren dan baik dalam memesan kalimat representatif, sehingga dapat mempermudah pemahaman bacaan dan mengurangi waktu yang dibutuhkan untuk membaca ringkasan.
PEMBOBOTAN KALIMAT BERDASARKAN FITUR BERITA DAN TRENDING ISSUE UNTUK PERINGKASAN MULTI DOKUMEN BERITA Hayatin, Nur; Fatichah, Chastine; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 13, No 1, Januari 2015
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v13i1.a386

Abstract

Ringkasan berita diartikan sebagai teks yang dihasilkan dari satu atau lebih kalimat yang menyampaikan informasi penting dari berita. Salah satu fase penting dalam peringkasan adalah pembobotan kalimat (sentence scoring). Dimana pada peringkasan berita, metode pembobotannya sebagian besar menggunakan fitur dari berita sendiri. Padahal dalam satu topik berita dimungkinkan adanya multiple issue. Dari multiple issue biasanya hanya ada satu isu yang menjadi pokok pembicaraan yang disebut dengan Trending Issue. Trending Issue inilah yang harusnya dipertimbangkan pada proses peringkasan berita sehingga ringkasan yang dihasilkan lebih koheren. Penelitian ini bertujuan untuk meringkas multi berita menggunakan metode pembobotan berdasarkan Trending Issue dengan tetap mempertimbangkan fitur penting berita, yaitu word frequency, TF-IDF, posisi kalimat, dan kemiripan kalimat terhadap judul (NeFTIS). Dimana Trending Issue didapatkan dari data Twitter dengan cara mengelompokkan tweets kemudian melakukan ekstraksi isu pada tiap kelompok yang terbentuk. Selanjutnya tiap isu diberikan bobot menggunakan konsep Cluster Importance (CI). Isu dengan bobot terbesar yang akan dipilih sebagai Trending Issue. Ada 5 tahap yang dilakukan untuk menghasilkan ringkasan multi berita dengan menggunakan NeFTIS, yaitu ekstraksi Trending Issue, seleksi berita, ekstraksi fitur berita, penghitungan total bobot kalimat, dan penyusunan ringkasan. Untuk mengukur kualitas sistem digunakan metode evaluasi ROUGE-1 dengan menganalisa performa dari hasil ringkasan dengan menggunakan metode pembobotan NeFTIS dibandingkan dengan hasil ringkasan dengan hanya menggunakan fitur berita (NeFS). Hasil rata-rata max-ROUGE-1 untuk seluruh variasi jumlah kalimat yang menyusun ringkasan (n) menunjukan bahwa metode pembobotan NeFTIS lebih akurat dibanding dengan metode pembobotan NeFS dengan nilai rata-rata max-ROUGE-1 terbesar 0.8201 untuk n=30.
EKSTRAKSI KATA KUNCI BERDASARKAN HIPERNIM DENGAN INISIALISASI KLASTER MENGGUNAKAN FUZZY ASSOCIATION RULE MINING PADA PENGELOMPOKAN DOKUMEN Rozi, Fahrur; Fatichah, Chastine; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 13, No 2, Juli 2015
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v13i2.a488

Abstract

Pertumbuhan dunia digital dalam dokumen tekstual terutama di World Wide Web mengalami pertumbuhan pesat. Pen-ingkatan dokumen tekstual ini menyebabkan terjadinya penumpukan informasi, sehingga diperlukan sebuah pengorgan-isasian yang efisien untuk pengelolaan dokumen tekstual. Salah satu metode yang dapat mengelompokkan dokumen dengan tepat adalah menggunakan fuzzy association rule. Tahap ekstraksi kata kunci serta tipe fuzzy yang digunakan berpengaruh terhadap kualitas pengelompokan dokumen. Penggunaan hipernim dalam ekstraksi kata kunci untuk mendapatkan suatu klaster label dapat memperluas makna dari klaster label, sehingga dapat diperoleh suatu meaningful klaster label, selain itu ambiguitas dan uncertainties yang terjadi di dalam aturan fuzzy logic systems (FLS) tipe-1 dapat diatasi dengan fuzzy set tipe-2. Penelitian ini mengusulkan sebuah metode yaitu ekstraksi kata kunci berdasarkan hipernim dengan inisialisasi klaster menggunakan fuzzy association rule mining pada pengelompokan dokumen. Metode ini terdiri dari empat tahap, yaitu : preprocessing dokumen, ekstraksi key terms dari hipernim, ekstraksi kandidat klaster, dan konstruksi klaster tree. Pengujian terhadap metode ini dilakukan dengan tiga jenis data berbeda, yaitu Classic, Reuters, dan 20 Newsgroup. Pengujian dilakukan dengan membandingkan nilai overall f-measure dari metode tanpa hipernim (level 0), hipernim level 1, dan hipernim level 2. Berdasarkan pengujian didapatkan bahwa penggunaan hipernim dalam ektraksi kata kunci mampu menghasilkan rata-rata overall f-measure sebesar 0.5783 untuk data classic, 0.4001 untuk data reuters, dan 0.5269 untuk data 20 newsgroup.
ALGORITMA KOMPUTASI CERDAS UNTUK PREDIKSI JUMLAH PENGGUNA KENDARAAN SEBAGAI INDIKATOR RAWAN MACET Purwitasari, Diana; Mukhtar, Tsabbit Aqdami; Buliali, Joko Lianto
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No 1, Januari 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i1.a515

Abstract

Pertumbuhan jumlah kendaraan bermotor yang tinggi menimbulkan permasalahan kemacetan sehingga memerlukan suatu solusi untuk menanganinya. Jalan rawan macet diketahui berdasarkan banyak kendaraan yang lewat dalam rentang waktu tertentu. Bahasan makalah ini adalah penggunaan algoritma komputasi cerdas, multi layer perceptron, k-means dan particle swarm optimization (PSO), untuk melakukan peramalan jalan rawan macet berdasarkan jumlah pengguna jalan. Sumber data diambil dari pengamatan lapangan yang digunakan dalam pembangkitan bilangan acak untuk distribusi uniform, eksponensial dan normal. Prediksi tingkat kepadatan jalan di suatu rentang waktu dengan jaringan saraf menunjukkan hasil lebih baik apabila data pembelajaran juga diambil dari waktu yang sama dengan sejumlah hari sebelumnya (seminggu sampai sebulan). Sedangkan penggunaan k-means+PSO untuk optimasi pengelompokkan jalan berdasarkan kepadatannya membutuhkan data belajar dengan rentang waktu lebih pendek (10 menit di hari kerja untuk mobil dan motor).
PEMILIHAN KATA KUNCI UNTUK DETEKSI KEJADIAN TRIVIAL PADA DOKUMEN TWITTER MENGGUNAKAN AUTOCORRELATION WAVELET COEFFICIENTS Perdana, Rizal Setya; Fatichah, Chastine; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 13, No 2, Juli 2015
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v13i2.a484

Abstract

ABSTRAK Pada penelitian ini diajukan sebuah sistem pendeteksian kejadian yang berulang secara periodik (trivial) dengan pem-ilihan kata kunci kejadian penting menggunakan perhitungan korelasi (autocorrelation) pada wavelet coefficient. Pem-ilihan kata kunci dilakukan untuk menemukan kata yang berulang secara periodik yang dianggap sebagai kejadian trivi-al. Hasil penelitian menunjukkan pemilihan kata kunci dengan nilai confidence boundary yang paling optimal adalah 0.20 pada nilai autocorrelation sebesar 31. Proses yang dilakukan oleh pengguna untuk menemukan kata kunci dari sua-tu kejadian, secara manual pengguna harus membaca banyak tweet dalam jumlah tertentu. Kata kunci yang merepresen-tasikan suatu kejadian penting menentukan tingkat penting atau tidaknya suatu kejadian. Pengguna twitter memiliki keterbatasan untuk membaca seluruh tweet yang ada untuk mengetahui adanya suatu kejadian. Sistem deteksi kejadian pada twitter telah dilakukan oleh para peneliti dalam bidang analisis sosial media. Pendeteksian kejadian trivial atau tidak penting yang terpisah dari kejadian penting diperlukan untuk memisahkan dua kejadian tersebut. Proses eliminasi terhadap kejadian trivial akan menyisakan tweet kejadian penting. Salah satu kejadian trivial adalah kejadian yang ber-ulang secara periodik dimana membutuhkan suatu cara spesifik untuk mendeteksi kemunculannya. Pendeteksian kejadian dilakukan dengan memanfaatkan pola-pola temporal atau sinyal dari data Twitter dalam bentuk sinyal wavelet untuk mendeteksi kemunculan kejadian penting. Pada penelitian ini melakukan pendeteksian kejadian yang berulang secara periodik dengan pemilihan kata kunci untuk kejadian penting. Sistem pendeteksian kejadian penting melakukan perhitungan terhadap autocorrelation pada koefisien wavelet. Hasil perhitungan menunjukkan bahwa pemilihan kata kunci paling optimal pada nilai confidence boundary sebesar 0.20 dan nilai autocorrelation sebesar 31.
KOMBINASI METODE MULTILAYER PERCEPTRON DAN TEORI FUZZY UNTUK KLASIFIKASI DATA MEDIS Navastara, Dini Adni; Safitri, Julia; Purwitasari, Diana
IKRAITH-INFORMATIKA Vol 2 No 2 (2018): IKRAITH INFORMATIKA VOL 2 NO 2 Juli 2018
Publisher : Fakultas Teknik Universitas Persada Indonesia YAI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (643.502 KB)

Abstract

Kemajuan teknologi informasi saat ini banyak digunakan untuk membantu komputasi data dalam berbagaipenelitian, salah satunya dalam bidang kesehatan (medis). Dibutuhkan peranan teknologi informasi untukmembantu komputasi dengan melakukan klasifikasi data medis berdasarkan keterangan-keterangan yangmenjelaskan data tersebut. Dalam tahapan klasifikasi terkadang data masih dapat timbul beberapa ketidakpastianyang disebabkan oleh adanya informasi yang kurang tepat, ambiguitas dalam data masukan, tumpang tindih batasbatasantara kelas, dan ketidaktentuan dalam mendefinisikan fitur. Untuk mengatasi permasalahan tersebut,dilakukan implementasi metode Neuro-fuzzy yang menggunakan kombinasi Neural Network dan pendekatan teoriFuzzy Set untuk klasifikasi data medis. Neuro-fuzzy merupakan penggabungan antara sistem Neural Network dansistem fuzzy. Sistem logika fuzzy memiliki kemampuan menangani data pengetahuan dalam persepsi danpenalaran seperti otak manusia tetapi tidak memiliki kemampuan untuk belajar dan beradaptasi. Sedangkan NeuralNetwork memiliki kemampuan untuk belajar dan beradaptasi tetapi tidak memiliki kemampuan penalaran sepertipada sistem logika fuzzy. Salah satu algoritma yang dapat diandalkan dalam klasifikasi data dari domain NeuralNetwork adalah Multilayer Perceptron Backpropagation Network (MLPBPN). Dari hasil uji coba didapatkantingkat akurasi pada dataset Breast Cancer Wisconsin, Mammographic Mass, dan Pima Indians Diabetes masingmasingmencapai 97,512%, 84,666%, dan 81,613%. Selain itu, metode Neuro-Fuzzy dapat meningkatkan akurasirata-rata sebesar 3,536% dari metode ANFIS.
PDITS: APLIKASI PANGKALAN DATA TERPADU UNTUK MENDUKUNG INTEGRASI MULTI SISTEM INFORMASI DI LINGKUNGAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER Purwitasari, Diana; Yuhana, Umi Laili; Rahman, Arief; Setiawan, Bambang; Affandi, Achmad
SISFO Vol 6 No 1 (2016)
Publisher : Department of Information Systems, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penyelenggaraan pendidikan di perguruan tinggi wajib dilaporkan ke Pangkalan Data Pendidikan Tinggi (PDPT) yang terintegrasi secara nasional sebagai bentuk akuntabilitas publik layanan pendidikan. Untuk mendukung proses bisnis kegiatan pendidikan Institut Teknologi Sepuluh Nopember (ITS) telah mengembangkan banyak sistem informasi. Data-data pada masing-masing sistem diintegrasikan di suatu pangkalan data terpadu ITS disebut PDITS sesuai konsep satu kali entri data untuk banyak pemanfaatan yang membantu dalam pelaporan ke PDPT. Pada makalah ini diuraikan suatu cara mengintegrasikan data dari beberapa sistem informasi dengan melakukan penarikan data dan penyesuaian data tersebut ke model basisdata terpusat PDITS. Selanjutnya pemanfaatan data ke sistem informasi lain dilakukan dengan memproses data PDITS ke format data sesuai kebutuhan. Hasil sistem PDITS yang meliputi tiga tahap utama: Impor, Validasi dan Proses menunjukkan kemudahan sistem integrasi sehingga dapat dilakukan oleh staf non teknis. Meskipun demikian pengembangan masih perlu dilakukan untuk integrasi dengan lebih banyak sistem informasi lainnya.
Co-Authors Abdillah, Abid Famasya Abdillah, Surya Abid Famasya Abdillah Achmad Affandi Adhi Nurilham Adi Surya Suwardi Ansyah Adillion, Ilham Gurat Adni Navastara, Dini Agus Budi Raharjo Agus Budi Raharjo Agus Zainal Arifin Agus Zainal Arifin Ahmad Syauqi Ahmad Syauqi Aida Muflichah Akwila Feliciano Akwila Feliciano Alif Akbar Fitrawan, Alif Akbar Alqis Rausanfita Aminul Wahib Aminul Wahib Aminul Wahib Andrea Bemantoro J Apriantoni Apriantoni Apriantoni, Apriantoni Ardianto Ardianto Ariadi Retno Tri Hayati Arief Rahman Arif Fadllullah Arijal Ibnu Jati Arini Rosyadi Ario Bagus Nugroho Arrie Kurniawardhani Arya Putra Kurniawan Asiyah Nur Kholifah Atikah, Luthfi Bambang Setiawan Baskoro Adi Pratomo Baskoro, Fajar Benito, Davian Budi Pangestu Budi Rahardjo Budi Raharjo, Agus Budiyono, Yanuardhi Arief Buliali, Joko Lianto Cahyaningtyas, Zakiya Azizah Chastine Fatichah Chilyatun Nisa, Chilyatun Christian Sri kusuma Aditya, Christian Sri kusuma Cornelius Bagus Purnama Putra Damayanti, Putri Daniel Swanjaya Dasrit Debora Kamudi Dhian Kartika Dini Adni Navastara, Dini Adni Dwi Sunaryono Dwi Sunaryono Edy Sukotjo Eko Riduwan Elshe Erviana Angely Erlinda Argyanti Nugraha Erlinda Argyanti Nugraha F.X. Arunanto Fahmi Amiq Fahrur Rozi Fajar Baskoro Fajar Baskoro Falach Asy'ari, Misbachul Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Febri Fernanda Fransiscus Xaverius Arunanto Galih Hendra Wibowo Ginardi, Raden Venantius Hari Glory Intani Pusposari Gurat Adillion, Ilham Gus Nanang Syaifuddiin Hadziq Fabroyir Hafidz, Abdan Hamidi, Mohammad Zaenuddin Handayani Tjandrasa Haniefardy, Addien Hanif Affandi Hartanto Haykal, Muhammad Farhan Herdayanto Sulistyo Putro Hilya Tsaniya Hilya Tsaniya Hudan Studiawan Husna, Farida Amila I Ketut Eddy Purnama I Made Satria Bimantara Ilmi, Akhmad Bakhrul Imam Santosa Indra Lukmana Irdayanti, Marina Ivonne Soejitno Juanita, Safitri Juanita, Safitri Juli Purwanto Kardawi, Muhammad Yusuf Kautsar, Faiz Kevin Christian Hadinata Kevin Christian Hadinata Khadijah F. Hayati Kurnia Aji Tritamtama Lailatul Hidayah M. Abdillah M. Abdul Wakhid Mabahist, Fahril Maheswari, Clarissa Luna Mamluatul Hani’ah Mauridhi Hery Purnomo Mirza Hamdhani Misbakhul Munir Irfan Subakti Mohamad Anwar Syaefudin Muhamad Nasir Muhammad Abdul Wakhid Muhammad Jerino Gorter Muhammad Machmud Muhammad Mirza Muttaqi Nabila Puspita Firdi Nada Fitrieyatul Hikmah Nanik Suciati Narandha Arya Ranggianto Nova Rijati Novemi Uki A Novrindah Alvi Hasanah Nur Azizah, Anisa Nur Hayatin Nurilham, Adhi Oktaviandra Pradita Putri Oktaviandra Pradita Putri, Oktaviandra Pradita Paramastri Ardiningrum Putu Praba Santika Putu Yuwono Kusmawan Raihan, Muhammad Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Nur Esti Anggraini, Ratih Nur Esti Rendra Dwi Lingga P. Resti Ludviani Rio Indralaksono Rizal Setya Perdana Rizka Sholikah Rizka Wakhidatus Sholikah Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Afthoni Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Rully Sulaiman Ryfial Azhar, Ryfial Safhira Maharani Safhira Maharani Safitri, Julia Salim Bin Usman Salim Bin Usman Salsabila Mazya Permataning Tyas Salsabila Salsabila Satrio Hadi Wijoyo Satrio Verdianto Satrio Verdianto Sembiring, Fred Erick Septiyan Andika Isanta Septiyan Andika Isanta Septiyawan Rosetya Wardhana Septiyawan Rosetya Wardhana Sherly Rosa Anggraeni Sherly Rosa Anggraeni Sidharta, Bayu Adjie Sihombing, Drigo Alexander Siti Rochimah Stefani Tasya Hallatu Surya Sumpeno Suwida, Katon Syadza Anggraini Tanzilal Mustaqim Tegar Rachman Muzzammil Tesa Eranti Putri Tri Arief Sardjono Tsabbit Aqdami Mukhtar, Tsabbit Aqdami Umy Rizqi Verdianto, Satrio Victor Hariadi Vit Zuraida Wardhana, Septiyawan R. Wardhana, Septiyawan Rosetya Wicaksono, Farhan Wijayanti Nurul Khotimah Wijoyo, Satrio Hadi Windy Deftia Mertiana Wisma Dwi Prastya, Ifnu Wulansari Wulansari Yasinta Romadhona Yatestha, Anak Agung Yoga Yustiawan Yonathan, Vincent Yufis Azhar Yuhana, Umi Laili Yulia Niza Yulia Niza Yulian Findawati Yunianto, Dika R. Zahrul Zizki Dinanto Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas