Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : IPTEK The Journal for Technology and Science

Concrete Failure Modeling Based on Micromechanical Approach Subjected to Static Loading Endah Wahyuni
IPTEK The Journal for Technology and Science Vol 21, No 1 (2010)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v21i1.22

Abstract

In this paper, a micromechanical model based on the Mori-Tanaka method and the spring-layer model is developed to study the stress-strain behavior of concrete. The concrete is modeled as a two-phase composite. And the failure of concrete is categorized as mortar failure and interface failure. The research presents a method for estimating the modulus of concrete under its whole loading process. The proposed micromechanical model owns the good capabilities for predicting the entire response of concrete under uniaxial compression. It is suitable that tensile strain is as the criterion of concrete failure and the prediction of crack direction also fits with experimental phenomenon.
Relationship between Static Stiffness and Modal Stiffness of Structures Endah Wahyuni; Tianjian Ji Tianjian Ji
IPTEK The Journal for Technology and Science Vol 21, No 2 (2010)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v21i2.36

Abstract

This paper derives the relationship between the static stiffness and modal stiffness of a structure. The static stiffness and modal stiffness are two important concepts in both structural statics and dynamics. Although both stiffnesses indicate the capacity of the structure to resist deformation, they are obtained using different methods. The former is calculated by solving the equations of equilibrium and the latter can be obtained by solving an eigenvalue problem. A mathematical relationship between the two stiffnesses was derived based on the definitions of two stiffnesses. This relationship was applicable to a linear system and the derivation of relationships does not reveal any other limitations. Verification of the relationship was given by using several examples. The relationship between the two stiffnesses demonstrated that the modal stiffness of the fundamental mode was always larger than the static stiffness of a structure if the critical point and the maximum mode value are at the same node, i.e. for simply supported beam and seven storeys building are 1.5% and 15% respectively. The relationship could be applied into real structures, where the greater the number of modes being considered, the smaller the difference between the modal stiffness and the static stiffness of a structure.