Claim Missing Document
Check
Articles

Found 2 Documents
Search

Numerical Study of Early Detection of Tuberculosis Infected with High Sensitivity Plasmonic Sensor Irawan, Dedi; Azhar; Ramadhan, Khaikal; Marwin, Azwir; Marwan, Arip
Science and Technology Indonesia Vol. 9 No. 1 (2024): January
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.1.94-102

Abstract

In this work, a photonic crystal fiber based on a plasmonic sensor for the early detection of tuberculosis has been designed with finite element analysis. The component is constructed with a substrate layer made of fused silica material, which is then coated with a thin film of TiO2 layer as an adhesive layer to strongly attach the Au layer with the silica fiber surface. The TiO2 layer has an optimal thickness of 45 nm, while the Au layer has a thickness of 50 nm. The sensor design has a refractive index (RI) detection range from 1.27 RIU to 1.37 RIU, it also shows a maximum wavelength sensitivity (WS), maximum amplitude sensitivity (AS), sensor resolution (SR), and sensor accuracy (SA) of 20,000 nm/RIU (x-polarized) and 17.000 nm/RIU( y-polarized), -211.38 1/RIU (x-polarized) and -211.211 1/RIU (y-polarized), 9.17 x 10−5 RIU (x-polarized) and 1 x 10−4 RIU (y-polarized), and 0.025/nm respectively. Tuberculosis exhibits a normal and infected RI range of 1.343 RIU to 1.351 RIU. Therefore, the proposed sensor design is capable of detecting four types of TB infections with high sensitivity.
Ultra low loss and dual polarized SPR-PCF sensor based on refractive index Irawan, Dedi; Ramadhan, Khaikal; Saktioto, Saktioto; Fitmawati, Fitmawati; Hanto, Dwi; Widiyatmoko, Bambang; Marwin, Azwir; Azhar, Azhar
Bulletin of Electrical Engineering and Informatics Vol 12, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i6.4293

Abstract

In this paper presents a numerical simulation using the finite element method (FEM) to analyze the performance of a photonic crystal fiber (PCF) integrated with plasmonic material sensor components. The sensor comprises silica and Au layers with a thickness of 45 nm, arranged in a simple geometric structure. Our proposed sensor component exhibits ultra-low loss, distinguishing it from previous studies that have focused on wavelength-sensitive (WS) and amplitude-sensitive (AS) measurement techniques. The refractive index (RI) range of the sensor component spans from 1.32 to 1.38 RIU. The maximum WS and AS values achieved are 6,000 nm/RIU, -373.4 1/RIU (x-polarization), and -385.4 1/RIU (y-polarization), respectively. Moreover, we demonstrate an ultra-low loss of 0.00117 dB/cm (x-polarized) and 0.00307 dB/cm (ypolarized). In terms of sensor resolution, this design achieves a remarkable resolution of 1.6×10-7 RIU for both x-and y-polarized measurements