Dwi Hanto
Group THz-Photonics- Bidang Instrumentasi Fisis dan Optoelektronika Pusat Penelitian Fisika – Lembaga Ilmu Pengetahuan Indonesia (LIPI)

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

PERANCANGAN ALAT UKUR PEMILIH JANGKAUAN UNTUK MENGUKUR DAYA OPTIK Hanto, Dwi; Setiono, Andi; Sugiarto, Iyon T.; Waluyo, Thomas B.; Widiyatmoko, Bambang
Telaah Vol 32, No 2 (2014)
Publisher : Research Center for Physics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/tel.32.2.183

Abstract

Tulisan ini menjelaskan tentang pembuatan rangkaian pemilih jangkauan pada perancangan alat ukur daya optik atau powermeter optik. Penelitian yang dilakukan adalah membuat rangkaian pengkondisi sinyal. Rangkaian ini dibuat berdasarkan penguat transimpedansi dengan 6 buah pilihan resistansi umpan balik, yaitu 1 kΩ, 10 kΩ, 100 kΩ, 510 kΩ, 1 MΩ, dan 2 MΩ. Pengukuran dilakukan dengan menggunakan sumber cahaya berupa laser dengan panjang gelombang 1310 nm. Untuk variasi nilai, daya optik dari laser diatenuasikan dengan menggunakan atenuator optik sampai dengan 60 dB. Keluaran dari rangkaian ini berupa tegangan listrik yang diukur dengan menggunakan voltmeter. Dari hasil pengukuran kami menemukan bahwa setiap nilai resistansi memiliki jangkauan yang berbeda. Nilai daya optik pada masing-masing pemilihan resistansi adalah seperti berikut: -15 dBm s.d. -4.96 dBm pada resistansi 1 kW, -20 dBm s.d. -8 dBm pada resistansi 10 kΩ, -32 dBm s.d -18 dBm pada resistansi 100 kΩ, -40 dBm s.d. -28 dBm pada 510 kΩ, -45 dBm s.d. -28 dBm pada resistansi 1MΩ, dan -50 dBm s.d. -40 dBm pada resistansi 2 MΩ. Penelitian ini dapat dikembangkan untuk membuat alat ukur daya optik multijangkauan dengan ketelitian yang baik dengan mengganti beberapa nilai resistansi sesuai dengan jangkauan yang diinginkan.
UJI COBA DAN ANALISIS SENSOR SERAT OPTIK UNTUK WEIGHT IN MOTION (WIM) PADA REPLIKA KENDARAAN STATIS DAN DINAMIS Widodo, Widodo; Hanto, Dwi; Waslaluddin, Waslaluddin
ISSN
Publisher : Program Studi Fisika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Serat optik dapat digunakan sebagai sensor berat untuk Weight In Motion (WIM) pada replika kendaraan berupa miniatur truk dalam keadaan statis dan dinamis dengan memanfaatkan prinsip mikrobending. Penelitian ini dilakukan untuk mengukur berat miniatur truk statis dan dinamis dengan menggunakan sensor serat optik. Metode yang digunakan adalah melakukan percobaan di Laboratorium. Penelitian ini menggunakan Light Emitting Diode (LED) dengan panjang gelombang 1310 nm, sensor serat optik, serat optik multimode step index, photodetector, Data Acquisition (DAQ), softwere weight in motion sensor yang dibuat oleh Pusat Penelitian Fisika LIPI, dan miniatur truk. Dari hasil karakterisasi sensor diperoleh persamaan untuk mengukur berat miniatur truk statis dan dinamis yaitu BT = (D + B) volt x 11,8 kg/volt + 9,66 kg. Sensor serat optik mampu merespon baik untuk berat miniatur truk antara 22,83 kg sampai 62,85 kg dengan kecepatan mendekati 0,5 km/jam sampai 1 km/jam. Faktor kecepatan mempengaruhi berat miniatur truk yang terukur. Pada nilai kecepatan maksimum 2,5 km/jam, berat miniatur truk dinamis fluktuatif. Hasil pengujian berat kendaraan pada miniatur truk tanpa muatan, miniatur truk dengan muatan 20 kg, dan miniatur truk dengan muatan 40 kg menunjukkan error masing-masing 0,16 %, 2,26 %, dan 7,3 %. Dengan error yang relatif kecil maka sensor serat optik dapat dijadikan sebagai alternatif lain dalam pengukuran berat kendaraan statis maupun dinamis.
Pengembangan Sistem Pengukuran Gejala Fisis Longsor Sistem Elektronik Dan Optik Widiyatmoko, Bambang; Hanto, Dwi; Puranto, Prabowo
BERKALA FISIKA Vol 13, No 2 (2010): Berkala Fisika, Edisi Khusus
Publisher : BERKALA FISIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (411.821 KB)

Abstract

Landslides are a common disaster in Indonesia so that the necessary anticipation through the monitoring of areas prone to the development of instrumentation systems disaster. Design has been done measuring the physical symptoms of landslides using optical and electronic systems. Measured physical symptoms include a shift in soil, and soil strains. Shift in the electronic ground sensors made by using linear and potensio constan current source. The result of measurement is known that this sensor can detect a shift change of 0.5 mm with a maximum shift of 250 mm. Soil strain measured using a fiber optic brag grating (FBG), which changes the transmission peak of FBG was done by using the diode laser wavelength sweeping. Fiber brag grating is an optical sensor that works according to the resonant effect of a refractive index grating lattice, where the resonant wavelength is determined by the lattice distance. From this principle it is when the lattice spacing change due to the strain and temperature changes, the peak resonant wavelength will also change. Changes in the resonant peaks are measured to determine the strain or temperature measurement. measurement Simulation showed that the relationship between strain and change in peak wavelength is linear with slope (Δλ / ΔF) 1.41 nm / kNewton. Keywords: Extensometer, linear potentiometers, fiber Brag grating, landslides, system monitoring, disaster  
Ultra low loss and dual polarized SPR-PCF sensor based on refractive index Irawan, Dedi; Ramadhan, Khaikal; Saktioto, Saktioto; Fitmawati, Fitmawati; Hanto, Dwi; Widiyatmoko, Bambang; Marwin, Azwir; Azhar, Azhar
Bulletin of Electrical Engineering and Informatics Vol 12, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i6.4293

Abstract

In this paper presents a numerical simulation using the finite element method (FEM) to analyze the performance of a photonic crystal fiber (PCF) integrated with plasmonic material sensor components. The sensor comprises silica and Au layers with a thickness of 45 nm, arranged in a simple geometric structure. Our proposed sensor component exhibits ultra-low loss, distinguishing it from previous studies that have focused on wavelength-sensitive (WS) and amplitude-sensitive (AS) measurement techniques. The refractive index (RI) range of the sensor component spans from 1.32 to 1.38 RIU. The maximum WS and AS values achieved are 6,000 nm/RIU, -373.4 1/RIU (x-polarization), and -385.4 1/RIU (y-polarization), respectively. Moreover, we demonstrate an ultra-low loss of 0.00117 dB/cm (x-polarized) and 0.00307 dB/cm (ypolarized). In terms of sensor resolution, this design achieves a remarkable resolution of 1.6×10-7 RIU for both x-and y-polarized measurements
Novel approach peak tracking method for FBG: Gaussian polynomial technique Meyzia, Bunga; Emrinaldi, Tengku; Wanara, Nadiah; Hanto, Dwi; Widyatmoko, Bambang; Rianaris, Agitta; Syahadi, Mohamad; Hairi, Haryana Mohd
Science, Technology and Communication Journal Vol. 4 No. 3 (2024): SINTECHCOM Journal (June 2024)
Publisher : Lembaga Studi Pendidikan and Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v4i3.262

Abstract

This paper presents a novel approach for tracking the peaks in the FBG spectrum using the Gaussian polynomial method. The proposed algorithm involves preprocessing the FBG signal, detecting the peaks, and fitting the peaks with a Gaussian function. The performance of the algorithm is evaluated using both simulated and experimental FBG spectra. This method involves fitting a Gaussian function to the peak of interest and using the fitted parameters to estimate peak height, width, and location. The method is highly accurate and precise and can provide detailed information about peak shape and position, making it effective for tracking complex or overlapping peaks. However, the method can be computationally intensive and may require careful selection of initial parameters to ensure accurate results. Despite these limitations, the Gaussian polynomial method is a powerful tool for peak tracking and analysis in various application.
Reflectivity of Bragg grating fiber on human respiration using InGaAs photodiode converter system Oktavia, Dian Putri; Saktioto, Saktioto; Hanto, Dwi; Syamsudhuha, Syamsudhuha; Amelia, Rina; Emrinaldi, Tengku
Indonesian Physics Communication Vol 22, No 2 (2025)
Publisher : Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/jkfi.22.2.175-178

Abstract

Respiration is a vital process characterized by exchanging oxygen and carbon dioxide. Indicators such as respiratory rate are essential for detecting pathological conditions, such as pneumonia and heart failure. This research aims to develop a respiratory sensor system based on fiber Bragg grating (FBG) as an innovative alternative in high electromagnetic field environments. The system utilizes FBG optical fibers to detect strain changes due to respiratory activity, providing a sensitive, safe, and highly electromagnetic environment-compatible solution. The study used FBG with variations in reflectivity of 30%, 50%, 70%, and 90%. FBGs are installed inside oxygen masks at five different points to monitor wavelength changes during respiratory activity. The measurement method involves an optical system with an interrogator and an electrical method using an InGaAs photodiode converter to convert an optical signal into an electrical signal visualized in LabVIEW. Respondents were tested in three activities: stillness, walking, and running. Variations in sensor reflectivity and position in masks were evaluated to determine sensitivity to respiratory changes. The data is collected as a graph of wavelength against time. The result showed that the change in the wavelength of the FBG correlated with the intensity of respiratory activity. The reflectivity of 90% results in the highest sensitivity, allowing for more accurate detection of strain changes. The position of the sensor at the center point of the mask demonstrates the most linear results, indicating optimal sensitivity. Physical activity, such as running, produces the greatest strain on the optical fiber. This study proves the potential of FBG as a precision medical sensor for respiratory monitoring applications.
Development of a 1550 nm LiDAR System Using Galvanometer and i-ToF Method for Distance Measurement and 2D Object Reconstruction Hutagalung, Febrian Winston; Purnamaningsih, Retno Wigajatri; Nainggolan, Sahat Pandapotan; Rofianingrum, Mefina Yulias; Hapiddin, Asep; Hanto, Dwi
International Journal of Electrical, Computer, and Biomedical Engineering Vol. 3 No. 3 (2025)
Publisher : Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62146/ijecbe.v3i3.129

Abstract

LiDAR (Light Detection and Ranging) is a high-precision distance measurement technology based on laser light reflection. This study develops a galvanometer-based LiDAR system utilizing the indirect Time of Flight (i-ToF) method with 100 MHz sinusoidal modulation and a 1550 nm eye-safe laser diode. The system is designed to measure distance and identify the shape of 2D objects. The system was tested through phase difference measurements, galvanometer response, and flat-surface mapping at distances of 25 cm and 35 cm. The measurement results demonstrate high linearity and stability up to a maximum range of 1.5 meters, in accordance with the 360° phase difference (∆φ) limitation. The measurements of object dimensions in the form of an aluminum foil-covered plate at distances of 25 cm (1.76 cm × 2.63 cm) and 35 cm (2.45 cm × 3.66 cm) indicate that increasing the distance between the object and the system results in a wider coverage area but with reduced spatial resolution. At a distance of 25 cm, the light beam shifts by 0.436 cm/1°∆φ, whereas at 35 cm it shifts by 0.611 cm/1°∆φ. Furthermore, the limited active area of the photodetector was identified as the main factor restricting the detection coverage. This research opens opportunities for further development, particularly in optimizing galvanometer angle adjustments and enhancing the photodetector’s active area to expand coverage and improve measurement accuracy under various operating conditions.
The use of fiber bragg grating coated with polyimide for CO2 gas sensor Irawan, Dedi; Saktioto, Saktioto; Azhar, Azhar; Sutoyo, Sutoyo; Sahal, Muhammad; Hanto, Dwi; Widiyatmoko, Bambang
Bulletin of Electrical Engineering and Informatics Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i5.9283

Abstract

This study presents the application of fiber bragg grating (FBG) sensors coated with polyimide for detecting carbon dioxide (CO₂) gas, employing both theoretical and experimental approaches. The basic FBG components were coated with polyimide layers of varying thicknesses. Subsequently, the fabricated FBG sensors were characterized using an optical interrogator system with four channels. Furthermore, the sensor was tested for CO₂ detection at a working temperature of 47 °C. Experimental data showed that the FBG sensor coated with polyimide layers of 10 nm, 15 nm, and 20 nm demonstrated sensitivities of 1.9 ppm, 1.84 ppm, and 1.8 ppm, respectively. In contrast, the uncoated FBG sensor exhibited a higher sensitivity of 3 ppm. Increasing the coating thickness beyond 20 nm leads to a decrease in sensor sensitivity. The findings suggest that an optimal polyimide coating thickness for CO₂ detection using FBG sensors is around 20 nm. Achieving high sensitivity in CO₂ gas sensors is crucial for their effective use across a broad range of applications.