Irwandi, Hafiz
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

K-Means Performance Optimization Using Rank Order Centroid (ROC) And Braycurtis Distance Irwandi, Hafiz; Sitompul, Opim Salim; Sutarman, Sutarman
Sinkron : jurnal dan penelitian teknik informatika Vol. 6 No. 2 (2022): Articles Research Volume 6 Issue 2, April 2022
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v7i2.11371

Abstract

K-Means is a clustering algorithm that groups data based on similarities between data. Some of the problems that arise from this algorithm are when determining the center point of the cluster randomly. This will certainly affect the final result of a clustering process. To anticipate the poor accuracy value, a process is needed to determine the initial centroid in the initialization process. The second problem is when calculating the Euclidean distance on the distance between data. However, this method only gives the same impact on each data attribute. From some of these problems, this study proposes the Rank Order Centroid (ROC) method for initializing the cluster center point and using the Braycurtis distance method to calculate the distance between data. With the experiment K=2 to K=10, the results obtained in this study are the proposed method obtains an iteration reduction of 6.6% on the Student Performance Exams dataset and 19.3% on the Body Fat Prediction dataset. However, there was an increase in iterations on the Heart Failure dataset by 24.2%. In testing the cluster results using the Silhouette Coefficient, this method shows an increase in the evaluation value of 5.9% in the Student Performance Exams dataset. However, the evaluation value decreased by 8.3% in the Body Fat Prediction dataset and 3.3% in the Heart Failure dataset.
Security Evaluation of Indonesian LLMs for Digital Business Using STAR Prompt Injection Agnes Irene Silitonga; Irwandi, Hafiz; Silitonga, Agnes Irene; Rudy Chandra; Simamora, Windi Saputri
Sinkron : jurnal dan penelitian teknik informatika Vol. 10 No. 1 (2026): Article Research January 2026
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v10i1.15662

Abstract

The adoption of Large Language Models (LLMs) in digital business systems in Indonesia is rapidly increasing; however, systematic security evaluation against Indonesian language prompt injection remains limited. This study introduces the Indonesian Prompt Injection Dataset, consisting of 50 attack scenarios constructed using the STAR framework, which combines structured instruction variations with sociotechnical context to expose potential model vulnerabilities. The dataset was used to evaluate three commercial LLM platforms ChatGPT using a GPT-4 class lightweight variant (OpenAI), Gemini 2.5 Flash (Google), and Claude Sonnet 4.5 (Anthropic) through controlled experiments targeting instruction manipulation in Indonesian. The results reveal distinct robustness profiles across models. Gemini 2.5 Flash exhibits moderate observed resilience, with 76% of scenarios classified as medium risk and 12% as high risk. ChatGPT demonstrates higher observed robustness under the tested scenarios, with 88% of cases classified as low risk and no high-risk outcomes. Claude Sonnet 4.5 shows intermediate observed resilience, with 72% low-risk and 28% medium-risk scenarios. High-risk cases primarily involve direct role override, urgency- or emotion-based prompts, and anti-censorship instructions, while structural ambiguities and multi-intent manipulations tend to result in medium risk, and mildly persuasive prompts fall under low risk. These findings suggest that while contemporary LLM defense mechanisms are effective against explicit attacks, contextual and emotionally framed manipulations continue to pose residual security challenges. This study contributes the first Indonesian-language prompt injection dataset and demonstrates the STAR framework as a practical and standardized approach for evaluating LLM security in digital business applications.