Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pemrosesan Video Pendeteksi Kecepatan dan Ketinggian Aliran Lahar Dingin Pendukung Sistem Peringatan Dini Lukman Awaludin; Agus Harjoko; Raden Sumiharto
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 2, No 2 (2012): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (571.114 KB) | DOI: 10.22146/ijeis.2438

Abstract

AbstrakPemrosesan video pendeteksi kecepatan dan ketingian aliran lahar dingin pendukung sistem peringatan dini merupakan salah satu sistem yang memanfaatkan  computer vision system  untuk deteksi kecepatan dan ketinggian aliran lahar dingin, yang selama ini belum menggunakan sensor deteksi kecepatan dan ketinggian lainnya kerena aliran lahar dingin bersifat merusak. Sistem ini merupakan tahap awal dalam perkembangan kearah sistem peringatan dini.Metode deteksi ini dirancang untuk dapat mendeteksi kecepatan dan ketinggian aliran lahar dingin dengan menggunakan metode optical flow pyramidal Lucas Kanade, edge detection Sobel, thresholding, frame adder, hough transform, dilation  dan Region of Interest. Pemrograman menggunakan OpenCV 2.3.1 dan menggunakan Visual Studio 2010. Bahasa pemrograman yang digunakan adalah bahasa C++.  Pengujian dengan beberapa sampel keadaan  menunjukkan bahwa metode ini memiliki nilai standar deviasi sebesar 0,033 untuk deteksi kecepatan, dan nilai standar deviasi  0,035 untuk deteksi ketinggian aliran. Kecepatan  minimal dan maksimal yang dapat terdeteksi bergantung pada jenis kamera yang digunakan dalam pengambilan data video, dalam hal ini sistem dengan kamera yang digunakan dapat mendeteksi kecepatan tiap frame dari perpindahan objek. Respon perubahan data ketinggian dan kecepatan aliran dapat dideteksi tiap frame, namun dalam penampilan nilainya dilakukan tiap 5 detik. Beberapa hal yang mempengaruhi keberhasilan metode ini adalah gerakan objek, pencahayaan lingkungan, serta spesifikasi perangkat keras yang digunakan. Kata kunci—pemrosesan video, aliran lahar dingin, optical flow, edge detection,region of interest.  AbstractDetection level and speed of cold lava flow for supporting early warning system using video processing is one system that uses computer vision system for the detection level and speed cold lava flow, which have not used speed detection sensors because they can be damaged by cold lava flow, and in the case of this is an early stage in the development of early warning systems towards.The detection method is designed to detect the speed and height of the cold lava flow using Pyramidal Lucas Kanade optical flow, Sobel edge detection, thresholding, frame adder, hough transform, dilation and Region of Interestusing. Programming using OpenCV 2.3.1 and using Visual Studio 2010. The programming language using C++.The test results with some samples of the state shows that the method has a standard deviation value of 0.033 for the detection flow speed, and the standard deviation value of 0.035 for the detection of the flow height. Minimum and the maximum speed that can be detected depends on the type of camera used in the retrieval of video data, in this case with a camera system that is used to detect the speed of each frame of the object displacement. Response data changes level and speed can be detected per frame, but the appearance of the value performed every 5 seconds. Some things that affect the success of this method is the movement of objects, ambient lighting, and hardware specifications used. Keywords—video processing, cold lava flow, optical flow, edge detection, region of interest.
Inspeksi Kualitas Pengelasan Besi Menggunakan Teknik Segmentasi Citra Berbasis Convolutional Neural Network Wahyono, Wahyono; Dharmawan, Andi; Awaludin, Lukman; Nathan, Oskar; Baskara, Baskara
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 14, No 1 (2024): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijeis.89034

Abstract

Inspeksi pengelasan merupakan kebutuhan mutlak bagi dunia industri terutama yang bergerak dibidang otomotif untuk memastikan kualitas las. Namun demikian, sebagian besar industri masih menggunakan pemeriksaan manual yang bersifat subjektif dan penuh dengan bias yang dapat berakibat pada inkonsistensi dalam penilaian standar kualitas. Oleh karena itu, diperlukan suatu sistem cerdas yang dapat memeriksa kualitas pengelasan dengan konsisten. Penelitian ini bertujuan untuk membuat model kecerdasan buatan berbasis deep learning dan computer vision untuk mendeteksi area-area pengelasan dan mengklasifikasikannya kedalam kategori baik dan buruk. Model CNN dengan arsitektur UNet diadopsi untuk melakukan segmentasi citra pada gambar pengelasan besi. Studi penggunaan beberapa teknik ekstraksi fitur juga dilakukan untuk mendapatkan performa model terbaik berdasarkan skor IoU dan kecepatan konvergensi model. Berdasarkan hasil eksperimen, teknik CNN UNet terbukti mampu meningkatkan performa model dengan skor IoU sebesar 78,1% dan dengan kecepatan konvergensi dalam 144 epoch.--Welding inspection is an absolute necessity for the industrial world, especially those engaged in the automotive sector to ensure weld quality. However, most industries still use manual inspection which is subjective and full of bias which can result in inconsistencies in the assessment of quality standards. Therefore, intelligent system that can check the quality of welding consistently is needed. This study aims to create an artificial intelligence model based on deep learning and computer vision to detect welding spots and classify them into good and bad categories. CNN model with UNet architecture is adopted to perform image segmentation on iron welding images. Studies using several feature extraction techniques are also conducted to obtain the best model performance based on IoU scores and model convergence speed. Based on the experimental results, the UNet technique is proven to be able to improve the performance of the model with an IoU score of 78.1% and with a convergence speed of 144 epochs.
Rancang Bangun Alat Deteksi Penyusup Menggunakan Kamera, Raspberry PI 4 Model B dan OpenCV 4 Slamet, Rifai; Rakhmadi, Frida Agung; Awaludin, Lukman
Sunan Kalijaga Journal of Physics Vol. 3 No. 1 (2021): Sunan Kalijaga Journal of Physics
Publisher : Prodi Fisika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/physics.v3i1.2303

Abstract

This research was motivated by the absence of an intruder detection device capable of processing images using OpenCV 4. This study aimed to design and manufacture an intruder detection device using a camera, Raspberry Pi 4 Model B, and OpenCV 4. This research was conducted in 2 stages, namely designing and manufacturing intruder detection device. The design of the device was carried out using the Sketchup 2018 software. The making of this device was carried out in 3 processes, namely making hardware, making dataset, and making software.