Zuriani Mustaffa
Universiti Malaysia Pahang

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A Blind Multiple Watermarks based on Human Visual Characteristics Ferda Ernawan; Siau-Chuin Liew; Zuriani Mustaffa; Kohbalan Moorthy
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 4: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (689.989 KB) | DOI: 10.11591/ijece.v8i4.pp2578-2587

Abstract

Digital watermarking is an alternative solution to prevent unauthorized duplication, distribution and breach of ownership right. This paper proposes a watermarking scheme for multiple watermarks embedding. The embedding of multiple watermarks use a block-based scheme based on human visual characteristics. A threshold is used to determine the watermark values by modifying first column of the orthogonal U matrix obtained from Singular Value Decomposition (SVD). The tradeoff between normalize cross-correlation and imperceptibility of watermarked image from quantization steps was used to achieve an optimal threshold value. The results show that our proposed multiple watermarks scheme exhibit robustness against signal processing attacks. The proposed scheme demonstrates that the watermark recovery from chrominance blue was resistant against different types of attacks.
Improving sentiment reviews classification performance using support vector machine-fuzzy matching algorithm Vivine Nurcahyawati; Zuriani Mustaffa
Bulletin of Electrical Engineering and Informatics Vol 12, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i3.4830

Abstract

High dimensionality in data sets is one of the challenges faced in classification, data mining, and sentiment analysis. In the data set, many dimensionalities require effort to simplify. Many of these dimensionalities have a major impact on the complexity and performance of the algorithms used for classification. Various challenges were encountered, including how to determine the optimal combination of pre-processing techniques, how to clean the dataset, and determine the best classification algorithm. This study uses a new approach based on the combination of three powerful techniques which are: tokenizing-lowercasing-stemming (for series of preprocessing), support vector machine (SVM) for supervised classification, and fuzzy matching (FM) for dimensionality reduction. The proposed model was realized using 3 different datasets, namely Amazon product review, movie review, and airline review from Twitter. This study provides better findings than the previous results. Improved performance is generated by SVM combined with FM, resulting in 96% accuracy. So that the SVM-FM combination can be said to be the best combination for sentiment analysis on the given data set.