Ku Ruhana Ku-Mahamud
Universiti Utara Malaysia

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Ant System and Weighted Voting Method for Multiple Classifier Systems Abdullah Husin; Ku Ruhana Ku-Mahamud
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (181.666 KB) | DOI: 10.11591/ijece.v8i6.pp4705-4712

Abstract

Combining multiple classifiers is considered as a general solution for classification tasks. However, there are two problems in combining multiple classifiers: constructing a diverse classifier ensemble; and, constructing an appropriate combiner. In this study, an improved multiple classifier combination scheme is propose. A diverse classifier ensemble is constructed by training them with different feature set partitions. The ant system-based algorithm is used to form the optimal feature set partitions. Weighted voting is used to combine the classifiers’ outputs by considering the strength of the classifiers prior to voting. Experiments were carried out using k-NN ensembles on benchmark datasets from the University of California, Irvine, to evaluate the credibility of the proposed method. Experimental results showed that the proposed method has successfully constructed better k-NN ensembles. Further more the proposed method can be used to develop other multiple classifier systems.
Adaptive Parameter Control Strategy for Ant-Miner Classification Algorithm Hayder Naser Khraibet Al-Behadili; Rafid Sagban; Ku Ruhana Ku-Mahamud
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 1: March 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (908.687 KB) | DOI: 10.52549/ijeei.v8i1.1423

Abstract

Pruning is the popular framework for preventing the dilemma of overfitting noisy data. This paper presents a new hybrid Ant-Miner classification algorithm and ant colony system (ACS), called ACS-AntMiner. A key aspect of this algorithm is the selection of an appropriate number of terms to be included in the classification rule. ACS-AntMiner introduces a new parameter called importance rate (IR) which is a pre-pruning criterion based on the probability (heuristic and pheromone) amount. This criterion is responsible for adding only the important terms to each rule, thus discarding noisy data. The ACS algorithm is designed to optimize the IR parameter during the learning process of the Ant-Miner algorithm. The performance of the proposed classifier is compared with related ant-mining classifiers, namely, Ant-Miner, CAnt-Miner, TACO-Miner, and Ant-Miner with a hybrid pruner across several datasets. Experimental results show that the proposed classifier significantly outperforms the other ant-mining classifiers.
Grey wolf optimization algorithm for hierarchical document clustering Ayad Mohammed Jabbar; Ku Ruhana Ku-Mahamud
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 3: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i3.pp1744-1758

Abstract

In data mining, the application of grey wolf optimization (GWO) algorithm has been used in several learning approaches because of its simplicity in adapting to different application domains. Most recent works that concern unsupervised learning have focused on text clustering, where the GWO algorithm shows promising results. Although GWO has great potential in performing text clustering, it has limitations in dealing with outlier documents and noise data. This research introduces medoid GWO (M-GWO) algorithm, which incorporates a medoid recalculation process to share the information of medoids among the three best wolves and the rest of the population. This improvement aims to find the best set of medoids during the algorithm run and increases the exploitation search to find more local regions in the search space. Experimental results obtained from using well-known algorithms, such as genetic, firefly, GWO, and k-means algorithms, in four benchmarks. The results of external evaluation metrics, such as rand, purity, F-measure, and entropy, indicates that the proposed M-GWO algorithm achieves better document clustering than all other algorithms (i.e., 75% better when using Rand metric, 50% better than all algorithm based on purity metric, 75% better than all algorithms using F-measure metric, and 100% based on entropy metric).
A class skew-insensitive ACO-based decision tree algorithm for imbalanced data sets Muhamad Hasbullah Bin Mohd Razali; Rizauddin Bin Saian; Yap Bee Wah; Ku Ruhana Ku-Mahamud
Indonesian Journal of Electrical Engineering and Computer Science Vol 21, No 1: January 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v21.i1.pp412-419

Abstract

Ant-tree-miner (ATM) has an advantage over the conventional decision tree algorithm in terms of feature selection. However, real world applications commonly involved imbalanced class problem where the classes have different importance. This condition impeded the entropy-based heuristic of existing ATM algorithm to develop effective decision boundaries due to its biasness towards the dominant class. Consequently, the induced decision trees are dominated by the majority class which lack in predictive ability on the rare class. This study proposed an enhanced algorithm called hellinger-ant-tree-miner (HATM) which is inspired by ant colony optimization (ACO) metaheuristic for imbalanced learning using decision tree classification algorithm. The proposed algorithm was compared to the existing algorithm, ATM in nine (9) publicly available imbalanced data sets. Simulation study reveals the superiority of HATM when the sample size increases with skewed class (Imbalanced Ratio < 50%). Experimental results demonstrate the performance of the existing algorithm measured by BACC has been improved due to the class skew-insensitiveness of hellinger distance. The statistical significance test shows that HATM has higher mean BACC score than ATM.
An improved ACS algorithm for data clustering Ayad Mohammed Jabbar; Ku Ruhana Ku-Mahamud; Rafid Sagban
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 3: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i3.pp1506-1515

Abstract

Data clustering is a data mining technique that discovers hidden patterns by creating groups (clusters) of objects. Each object in every cluster exhibits sufficient similarity to its neighbourhood, whereas objects with insufficient similarity are found in other clusters. Data clustering techniques minimise intra-cluster similarity in each cluster and maximise inter-cluster dissimilarity amongst different clusters. Ant colony optimisation for clustering (ACOC) is a swarm algorithm inspired by the foraging behaviour of ants. This algorithm minimises deterministic imperfections in which clustering is considered an optimisation problem. However, ACOC suffers from high diversification in which the algorithm cannot search for best solutions in the local neighbourhood. To improve the ACOC, this study proposes a modified ACOC, called M-ACOC, which has a modification rate parameter that controls the convergence of the algorithm. Comparison of the performance of several common clustering algorithms using real-world datasets shows that the accuracy results of the proposed algorithm surpasses other algorithms. 
Reservoir water level forecasting using normalization and multiple regression Siti Rafidah M-Dawam; Ku Ruhana Ku-Mahamud
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp443-449

Abstract

Many non-parametric techniques such as Neural Network (NN) are used to forecast current reservoir water level (RWLt). However, modelling using these techniques can be established without knowledge of the mathematical relationship between the inputs and the corresponding outputs. Another important issue to be considered which is related to forecasting is the preprocessing stage where most non-parametric techniques normalize data into discretized data. Data normalization can influence the the results of forecasting. This paper presents reservoir water level (RWL) forecasting using normalization and multiple regression. In this study, continuous data of rainfall (RF) and changes of reservoir water level (WC) are normalized using two different normalization methods, Min-Max and Z-Score techniques. Its comparative studies and forecasting process are carried out using multiple regression. Three input scenarios for multiple regression were designed which comprise of temporal patterns of WC and RF, in which the sliding window technique has been applied. The experimental results showed that the best input scenario for forecasting the RWLt employs both the RF and the WC, in which the best predictors are three day’s delay of WC and two days’ delay of RF. The findings also suggested that the performance of the RWL forecasting model using multiple regression was dependent on the normalization methods.
Non-dominated sorting Harris’s hawk multi-objective optimizer based on reference point approach Shaymah Akram Yasear; Ku Ruhana Ku-Mahamud
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i3.pp1603-1614

Abstract

A non-dominated sorting Harris’s hawk multi-objective optimizer (NDSHHMO) algorithm is presented in this paper. The algorithm is able to improve the population diversity, convergence of non-dominated solutions toward the Pareto front, and prevent the population from trapping into local optimal. This was achieved by integrating fast non-dominated sorting with the original Harris’s hawk multi-objective optimizer (HHMO).  Non-dominated sorting divides the objective space into levels based on fitness values and then selects non-dominated solutions to produce the next generation of hawks. A set of well-known multi-objective optimization problems has been used to evaluate the performance of the proposed NDSHHMO algorithm. The results of the NDSHHMO algorithm were verified against the results of an HHMO algorithm. Experimental results demonstrate the efficiency of the proposed NDSHHMO algorithm in terms of enhancing the ability of convergence toward the Pareto front and significantly improve the search ability of the HHMO.