Ayad Mohammed Jabbar
Shatt Al-Arab University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Grey wolf optimization algorithm for hierarchical document clustering Ayad Mohammed Jabbar; Ku Ruhana Ku-Mahamud
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 3: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i3.pp1744-1758

Abstract

In data mining, the application of grey wolf optimization (GWO) algorithm has been used in several learning approaches because of its simplicity in adapting to different application domains. Most recent works that concern unsupervised learning have focused on text clustering, where the GWO algorithm shows promising results. Although GWO has great potential in performing text clustering, it has limitations in dealing with outlier documents and noise data. This research introduces medoid GWO (M-GWO) algorithm, which incorporates a medoid recalculation process to share the information of medoids among the three best wolves and the rest of the population. This improvement aims to find the best set of medoids during the algorithm run and increases the exploitation search to find more local regions in the search space. Experimental results obtained from using well-known algorithms, such as genetic, firefly, GWO, and k-means algorithms, in four benchmarks. The results of external evaluation metrics, such as rand, purity, F-measure, and entropy, indicates that the proposed M-GWO algorithm achieves better document clustering than all other algorithms (i.e., 75% better when using Rand metric, 50% better than all algorithm based on purity metric, 75% better than all algorithms using F-measure metric, and 100% based on entropy metric).
An improved ACS algorithm for data clustering Ayad Mohammed Jabbar; Ku Ruhana Ku-Mahamud; Rafid Sagban
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 3: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i3.pp1506-1515

Abstract

Data clustering is a data mining technique that discovers hidden patterns by creating groups (clusters) of objects. Each object in every cluster exhibits sufficient similarity to its neighbourhood, whereas objects with insufficient similarity are found in other clusters. Data clustering techniques minimise intra-cluster similarity in each cluster and maximise inter-cluster dissimilarity amongst different clusters. Ant colony optimisation for clustering (ACOC) is a swarm algorithm inspired by the foraging behaviour of ants. This algorithm minimises deterministic imperfections in which clustering is considered an optimisation problem. However, ACOC suffers from high diversification in which the algorithm cannot search for best solutions in the local neighbourhood. To improve the ACOC, this study proposes a modified ACOC, called M-ACOC, which has a modification rate parameter that controls the convergence of the algorithm. Comparison of the performance of several common clustering algorithms using real-world datasets shows that the accuracy results of the proposed algorithm surpasses other algorithms.