Mohammad Faiz Liew Abdullah
Universiti Tun Hussein Onn Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A New All-Optical Signal Regeneration Technique for 10 GB/S DPSK Transmission System Bhagwan Das; Mohammad Faiz Liew Abdullah; Nor Shahida Mohd Shah
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 2: April 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (14.374 KB) | DOI: 10.11591/ijece.v6i2.pp859-869

Abstract

The transmission of high power inside the optical fiber, produce amplitude noise, phase noise and other transmission impairments that degrade the performance of optical communication system. The signal regeneration techniques are used to mitigate these nonlinear impairments in the electrical or in the optical domain. All-optical signal regeneration techniques are one of the solutions to mitigate these nonlinear transmission impairments in the optical domain without converting the signal from optical to electrical domain. The existing techniques are not capable enough to attain the Bit Error Rate (BER) less than 10-10 with the power penalty less than – 9dBm. In this paper, a new all-optical signal regeneration technique is developed that mitigate amplitude and phase noises in the optical domain. The new optical signal regeneration technique is developed by combining the two existing technique one is 3R (Reshaping, Reamplification and Retiming) regeneration and other is Phase Sensitive Amplification (PSA). The 10Gb/s Differential Phase shift Keying (DPSK) noisy transmission system is used to verify the features of developed technique. The developed technique successfully mitigates the nonlinear impairments from the noisy DPSK system with significant improvement in BER at low power penalty with the additional feature of high Q-factor and an eye open response for the regenerated signal. It is determined that BER of 10-12 is achieved at the power penalty of -14 dBm with Q-factor of 42 and an eye opened response. The developed technique in the DPSK system is realized using commercial software package Optisystem. The designed technique will be helpful to enhance the performance existing high-speed optical communication by achieving the minimum BER at low power penalty.
Embedded iron object detection using asynchronous full wave envelope detector technique in ground penetrating radar system Maryanti Razali; Ariffuddin Joret; Muhammad Suhaimi Sulong; Mohammad Faiz Liew Abdullah; Elfarizanis Baharudin; Che Ku Nor Azie Hailma Che Ku Melor; Nur Izzati Zulkefli; Noor Azwan Shairi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6187-6195

Abstract

The use of a ground penetrating radar (GPR) system that operates at low frequencies allows the detection of embedded objects underground from the earth’s surface deeper than high frequency. However, the output signal generated from the system using pulse modulation (PM) technique and high-frequency carrier, has many high ripple signals consequently resulting in a blurry image. Nevertheless, this ripple signal can be minimized by reprocessing the signal using an envelope detector method. In this study, an envelope detection technique called ArJED© asynchronous full-wave (AFW) was used in the GPR system and was tested at a frequency range from 0.06 to 0.08 GHz. A dipole antenna has been used as an embedded object detection sensor of the GPR system. The detection system of embedded objects involves four depths starting with 2 cm depth, 5 cm, 7 cm, and 20 cm. A comparison of embedded object images before and after the application of the envelope detection technique was done and proved that the proposed envelope detection technique has produced a clearer radargram image of the GPR system.