Reza Firsandaya Malik
Universitas Sriwijaya

Published : 18 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Bigram feature extraction and conditional random fields model to improve text classification clinical trial document Jasmir Jasmir; Siti Nurmaini; Reza Firsandaya Malik; Bambang Tutuko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18357

Abstract

In the field of health and medicine, there is a very important term known as clinical trials. Clinical trials are a type of activity that studies how the safest way to treat patients is. These clinical trials are usually written in unstructured free text which requires translation from a computer. The aim of this paper is to classify the texts of cancer clinical trial documents consisting of unstructured free texts taken from cancer clinical trial protocols. The proposed algorithm is conditional random Fields and bigram features. A new classification model from the cancer clinical trial document text is proposed to compete with other methods in terms of precision, recall, and f-1 score. The results of this study are better than the previous results, namely 88.07 precision, 88.05 recall and f-1 score 88.06.
The New Multipoint Relays Selection in OLSR using Particle Swarm Optimization Reza Firsandaya Malik; Tharek Abdul Rahman; Razali Ngah; Siti Zaiton Mohd; Hashim Hashim
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 10, No 2: June 2012
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v10i2.804

Abstract

The standard optimized link state routing (OLSR) introduces an interesting concept, the multipoint relays (MPRs), to mitigate message overhead during the flooding process. This paper propose a new algorithm for MPRs selection to enhance the performance of OLSR using particle swarm optimization sigmoid increasing inertia weight (PSOSIIW). The sigmoid increasing inertia weight has significance improve the particle swarm optimization (PSO) in terms of simplicity and quick convergence towards optimum solution. The new fitness function of PSOSIIW, packet delay of each node and degree of willingness are introduced to support MPRs selection in OLSR. The throughput, packet loss and end-to-end delay of the proposed method are examined using network simulator 2 (ns2).  Overall results indicate that OLSR-PSOSIIW has shown good performance compared to the standard OLSR and OLSR-PSO, particularly for the throughput and end-to-end delay. Generally the proposed OLSR-PSOSIIW shows advantage of using PSO for optimizing routing paths in the MPRs selection algorithm.
Neural network technique with deep structure for improving author homonym and synonym classification in digital libraries Firdaus Firdaus; Siti Nurmaini; Varindo Ockta Keneddi Putra; Annisa Darmawahyuni; Reza Firsandaya Malik; Muhammad Naufal Rachmatullah; Andre Herviant Juliano; Tio Artha Nugraha
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18878

Abstract

Author name disambiguation (AND), also recognized as name-identification, has long been seen as a challenging issue in bibliographic data. In other words, the same author may appear under separate names, synonyms, or distinct authors may have similar to those referred to as homonyms. Some previous research has proposed AND problem. To the best of our knowledge, no study discussed specifically synonym and homonym, whereas such cases are the core in AND topic. This paper presents the classification of non-homonym-synonym, homonym-synonym, synonym, and homonym cases by using the DBLP computer science bibliography dataset. Based on the DBLP raw data, the classification process is proposed by using deep neural networks (DNNs). In the classification process, the DBLP raw data divided into five features, including name, author, title, venue, and year. Twelve scenarios are designed with a different structure to validate and select the best model of DNNs. Furthermore, this paper is also compared DNNs with other classifiers, such as support vector machine (SVM) and decision tree. The results show DNNs outperform SVM and decision tree methods in all performance metrics. The DNNs performances with three hidden layers as the best model, achieve accuracy, sensitivity, specificity, precision, and F1-score are 98.85%, 95.95%, 99.26%, 94.80%, and 95.36%, respectively. In the future, DNNs are more performing with the automated feature representation in AND processing.
Author identification in bibliographic data using deep neural networks Firdaus Firdaus; Siti Nurmaini; Reza Firsandaya Malik; Annisa Darmawahyuni; Muhammad Naufal Rachmatullah; Andre Herviant Juliano; Tio Artha Nugraha; Varindo Ockta Keneddi Putra
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18877

Abstract

Author name disambiguation (AND) is a challenging task for scholars who mine bibliographic information for scientific knowledge. A constructive approach for resolving name ambiguity is to use computer algorithms to identify author names. Some algorithm-based disambiguation methods have been developed by computer and data scientists. Among them, supervised machine learning has been stated to produce decent to very accurate disambiguation results. This paper presents a combination of principal component analysis (PCA) as a feature reduction and deep neural networks (DNNs), as a supervised algorithm for classifying AND problems. The raw data is grouped into four classes, i.e., synonyms, homonyms, homonyms-synonyms, and non-homonyms-synonyms classification. We have taken into account several hyperparameters tuning, such as learning rate, batch size, number of the neuron and hidden units, and analyzed their impact on the accuracy of results. To the best of our knowledge, there are no previous studies with such a scheme. The proposed DNNs are validated with other ML techniques such as Naïve Bayes, random forest (RF), and support vector machine (SVM) to produce a good classifier. By exploring the result in all data, our proposed DNNs classifier has an outperformed other ML technique, with accuracy, precision, recall, and F1-score, which is 99.98%, 97.98%, 97.86%, and 99.99%, respectively. In the future, this approach can be easily extended to any dataset and any bibliographic records provider.