Claim Missing Document
Check
Articles

Intelligent Robotics Navigation System: Problems, Methods, and Algorithm Siti Nurmaini; Bambang Tutuko
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 6: December 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (611.098 KB) | DOI: 10.11591/ijece.v7i6.pp3711-3726

Abstract

This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments.
Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator using fuzzy logic controller Tresna Dewi; Siti Nurmaini; Pola Risma; Yurni Oktarina; Muhammad Roriz
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1118.067 KB) | DOI: 10.11591/ijece.v10i2.pp1376-1386

Abstract

The arm robot manipulator is suitable for substituting humans working in tomato plantation to ensure tomatoes are handled efficiently. The best design for this robot is four links with robust flexibility in x, y, and z-coordinates axis. Inverse kinematics and fuzzy logic controller (FLC) application are for precise and smooth motion. Inverse kinematics designs the most efficient position and motion of the arm robot by adjusting mechanical parameters. The FLC utilizes data input from the sensors to set the right position and motion of the end-effector. The predicted parameters are compared with experimental results to show the effectiveness of the proposed design and method. The position errors (in x, y, and z-axis) are 0.1%, 0.1%, and 0.04%. The rotation errors of each robot links (θ1, θ2, and θ3) are 0%, 0.7% and 0.3%. The FLC provides the suitable angle of the servo motor (θ4) responsible in gripper motion, and the experimental results correspond to FLC’s rules-based as the input to the gripper motion system. This setup is essential to avoid excessive force or miss-placed position that can damage tomatoes. The arm robot manipulator discussed in this study is a pick and place robot to move the harvested tomatoes to a packing system.
Intelligent Sensing Using Metal Oxide Semiconductor Based-on Support Vector Machine for Odor Classification Nyayu Latifah Husni; Siti Nurmaini; Irsyadi Yani; Ade Silvia
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1148.853 KB) | DOI: 10.11591/ijece.v8i6.pp4133-4147

Abstract

Classifying odor in real experiment presents some challenges, especially the uncertainty of the odor concentration and dispersion that can lead to a difficulty in obtaining an accurate datasets. In this study, to enhance the accuracy, datasets arrangement based on MOS sensors parameters using SVM approach for odor classification is proposed. The sensors are tested to determine the sensors' time response, sensors' peak duration, sensors' sensitivity, and sensors' stability when applied to the various sources at different range. Three sources were used in experimental test, namely: ethanol, methanol, and acetone. The gas sensors characteristics are analyzed in open sampling method to see the sensors' performance in real situation. These performances are considered as the base of choosing the position in collecting the datasets. The sensors in dynamic experiment have average of precision of 93.8-97.0%, the accuracy 93.3-96.7%, and the recall 93.3-96.7%. This values indicates that the collected datasets can support the SVM in improving the intelligent sensing when conducting odor classification work.
Intelligent Mobile Olfaction of Swarm Robots Siti Nurmaini; Bambang Tutuko; Aulia Rahman Thoharsin
IAES International Journal of Robotics and Automation (IJRA) Vol 2, No 4: December 2013
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (511.068 KB) | DOI: 10.11591/ijra.v2i4.pp189-198

Abstract

This work presents intelligent mobile olfaction design and experimental results of intelligent swarm robots to detection a gas/odour source in an indoor environment by using multi agent based on hybrid algorithm. We examine the problem for deciding when, how and where the gas/odour sensor should be activated. Simple form of cooperation between Interval Type-2 Fuzzy Logic and Particle Swarm Optimization (IT2FL-PSO) algorithm is implemented in the olfaction strategies. The real experiments performed on smaller five mobile robots equipped with dynamic gas/odour sensor TGS2600 and three infra-red sensors. The results show that single robot-based olfaction system with 5 behaviors capable for searching source of a simulated chemical leak in unknown environment and flooking behavior can be done by 3 robots to find the source of gas/odour.
Indonesian load prediction estimation using long short term memory Erliza Yuniarti; Siti Nurmaini; Bhakti Yudho Suprapto
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i3.pp1026-1032

Abstract

Prediction of electrical load is important because it relates to the source of power generation, cost-effective generation, system security, and policy on continuity of service to consumers. This paper uses Indonesian primary data compiled based on data log sheet per hour of transmission operators. In preprocessing data, detrending technique is used to eliminate outlier data in the time series dataset. The prediction used in this research is a long-short-term memory algorithm with stacking and time-step techniques. In order to get the optimal one-day forecasting results, the inputs are arranged in the previous three periods with 1, 2, 3 layers, 512 and 1024 nodes. Forecasting results obtained long short-term memory (LSTM) with three layers and 1024 nodes got mean average percentage error (MAPE) of 8.63 better than other models.
Deep ensemble learning for skin lesions classification with convolutional neural network Renny Amalia Pratiwi; Siti Nurmaini; Dian Palupi Rini; Muhammad Naufal Rachmatullah; Annisa Darmawahyuni
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp563-570

Abstract

One type of skin cancer that is considered a malignant tumor is melanoma. Such a dangerous disease can cause a lot of death in the world. The early detection of skin lesions becomes an important task in the diagnosis of skin cancer. Recently, a machine learning paradigm emerged known as deep learning (DL) utilized for skin lesions classification. However, in some previous studies by using seven class images diagnostic of skin lesions classification based on a single DL approach with CNNs architecture does not produce a satisfying performance. The DL approach allows the development of a medical image analysis system for improving performance, such as the deep convolutional neural networks (DCNNs) method. In this study, we propose an ensemble learning approach that combines three DCNNs architectures such as Inception V3, Inception ResNet V2 and DenseNet 201 for improving the performance in terms of accuracy, sensitivity, specificity, precision, and F1-score. Seven classes of dermoscopy image categories of skin lesions are utilized with 10015 dermoscopy images from well-known the HAM10000 dataset. The proposed model produces good classification performance with 97.23% accuracy, 90.12% sensitivity, 97.73% specificity, 82.01% precision, and 85.01% F1-Score. This method gives promising results in classifying skin lesions for cancer diagnosis.
Segmentation atrioventricular septal defect by using convolutional neural networks based on U-NET architecture Ade Iriani Sapitri; Siti Nurmaini; Sukemi Sukemi; M. Naufal Rachmatullah; Annisa Darmawahyuni
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp553-562

Abstract

Congenital heart disease often occurs, especially in infants and fetuses. Fetal image is one of the issues that can be related to the segmentation process. The fetal heart is an important indicator in the process of structural segmentation and functional assessment of congenital heart disease. This study is very challenging due to the fetal heart has a relatively unclear structural anatomical appearance, especially in the artifacts in ultrasound images. There are several types of congenital heart disease that often occurs namely in septal defects it consists of the atrial septal defect, ventricular septal defect, and atrioventricular septal defect. The process of identifying the standard of the heart, especially the fetus, can be identified with a 2D ultrasound video in the initial steps to diagnose congenital heart disease. The process of diagnosis of fetal heart standards can be seen from a variety of spaces, i.e., 4 chamber views. In this study, the standard semantic segmentation process of the fetal heart is abnormal and normal in terms of the perspective of 4 chamber views. The validation evaluation results obtained in this study amounted to 99.79% pixel accuracy, mean iou 96.10%, mean accuracy 97.82%, precision 96.41% recall 95.72% and F1 score 96.02%.
Metal Oxides Semiconductor Sensors for Odor Classification Nyayu Latifah Husni; Ade Silvia; Siti Nurmaini; Irsyadi Yani
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 6, No 3: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (584.242 KB) | DOI: 10.11591/ijres.v6.i3.pp133-149

Abstract

The performance of gas sensor will differ and vary due to the surrounding environment changing, the way of implementation, and the position of the sensors to the source. To reach a good result on gas sensors implementation, a performance test on sensors is needed. The results of the tests are useful for characterizing the properties of the particular material or device. This paper discusses the performances of metal oxides semiconductor (MOS) sensors. The sensors are tested to determine the sensors' time response, sensors' peak duration, sensors' sensitivity, and sensors' stability of the sensor when applied to the various sources at different range. Three sources were used in experimental test, namely: ethanol, methanol, and acetone. The gas sensors characteristics are analyzed in open sampling method in order to see the sensors' sensitivity to the uncertainty disturbances, such as wind. The result shows that metal oxides semiconductor sensor was responsive to the 3 sources not only in static but also dynamic conditions. The expected outcome of this study is to predict the MOS sensors' performance when they are applied in robotic implementation. This performance was considered as the training datasets of the sensor for odor classification in this research. From the experiments, It was got, in dynamic experiment, the senrors has average of precision of 93.8-97%, the accuracy 93.3-96.7%, and the recall 93.3-96.7%. This values indicates that the sensors were selective to the odor they sensed.
Bigram feature extraction and conditional random fields model to improve text classification clinical trial document Jasmir Jasmir; Siti Nurmaini; Reza Firsandaya Malik; Bambang Tutuko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18357

Abstract

In the field of health and medicine, there is a very important term known as clinical trials. Clinical trials are a type of activity that studies how the safest way to treat patients is. These clinical trials are usually written in unstructured free text which requires translation from a computer. The aim of this paper is to classify the texts of cancer clinical trial documents consisting of unstructured free texts taken from cancer clinical trial protocols. The proposed algorithm is conditional random Fields and bigram features. A new classification model from the cancer clinical trial document text is proposed to compete with other methods in terms of precision, recall, and f-1 score. The results of this study are better than the previous results, namely 88.07 precision, 88.05 recall and f-1 score 88.06.
A New Classification Technique in Mobile Robot Navigation Siti Nurmaini; Bambang Tutuko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 9, No 3: December 2011
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v9i3.736

Abstract

This paper presents a novel pattern recognition algorithm that use weightless neural network (WNNs) technique.This technique plays a role of situation classifier to judge the situation around the mobile robot environment and makes control decision in mobile robot navigation. The WNNs technique is choosen due to significant advantages over conventional neural network, such as they can be easily implemented in hardware using standard RAM, faster in training phase and work with small resources. Using a simple classification algorithm, the similar data will be grouped with each other and it will be possible to attach similar data classes to specific local areas in the mobile robot environment. This strategy is demonstrated in simple mobile robot powered by low cost microcontrollers with 512 bytes of RAM and low cost sensors. Experimental result shows, when number of neuron increases the average environmental recognition ratehas risen from 87.6% to 98.5%.The WNNs technique allows the mobile robot to recognize many and different environmental patterns and avoid obstacles in real time. Moreover, by using proposed WNNstechnique mobile robot has successfully reached the goal in dynamic environment compare to fuzzy logic technique and logic function, capable of dealing with uncertainty in sensor reading, achieving good performance in performing control actions with 0.56% error rate in mobile robot speed.
Co-Authors A. Darmawahyuni A. I. Sapitri Ade Iriani Sapitri Ade Iriani Sapitri Ade Iriani Sapitri Ade Silvia Ade Silvia Ade Silvia Handayani Aditya Aditya Aditya, Aditya Agung Juli Anda Agus Triadi Agus Triadi Agus Triadi Ahmad Zarkasi Ahmad Zarkasi Ahmad Zarkasi Ahmad Zarkasih Akhiar Wista Arum Andre Herviant Juliano Anggun Islami Anggun Islami Annisa Darmawahyuni Ardy Hidayat Arief Cahyo Utomo Armansyah, Risky Arnaldo, Muhammad Arum, Akhiar Wista Aulia Rahman Thoharsin B. Tutuko Bambang Tutuko Bambang Tutuko Bayu Wijaya Putra Benedictus Wicaksono Widodo Bhakti Yudho Suprapto Bhakti Yudho Suprapto Bhakti Yudho Suprapto Cindy Kesty Darmawahyuni, Annisa Darmawahyuni, Annisa Deris Stiawan Dewi, Kemala Dewi, Tresna Dian Palupi Rini Dian Palupi Rini Dian Palupi Rini Dimas Budianto Dinda Lestarini Dodo Zaenal Abidin Dwi Mei Rita Sari Ekawati Prihatini Erliza Yuniarti Fachrudin Abdau Fahreza, Irvan Falah Yuridho Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus, Firdaus Firsandaya Malik, Reza Ganesha Ogi GITA FADILA FITRIANA Hadipurnawan Satria Hanif Habibie Supriansyah Huda Ubaya Huda Ubaya Huda Ubaya Husnawati Husnawati Husnawati Husnawati Husnawati Husni, Nyayu Latifah Husni, Nyayu Latifah Irfannuddin Irfannuddin Irsyadi Yani Irvan Fahreza Iryadi Yani Iryadi Yani, Iryadi Isdwanta, Rendy Islami, Anggun Jasmir Jasmir Jasmir Jasmir Jordan Marcelino Kemala Dewi Khairunnisa, Cholidah Zuhroh Krisna Murti Kurniawan, Anggy Tias Kurniawan, Anggy Tyas Legiran Legiran M. Hashim, Siti Zaiton M. N. Rachmatullah M. Naufal Rachmatullah Maharani, Masayu Nadila Marcelino, Jordan Masayu Nadila Maharani Mira Afrina Muhamad Akbar Muhammad Afif Muhammad Anshori Muhammad Arnaldo Muhammad Fachrurrozi Muhammad Fachrurrozi Muhammad Irham Rizki Fauzi Muhammad Naufal Rachmatullah Muhammad Naufal, Muhammad Muhammad Roriz Muhammad Taufik Roseno, Muhammad Taufik Muzakkie, Mufida Nabilah, Aini Nadia Ayu Oktabella, nadia ayu oktabella Novi Yusliani Nurqolbiah, Fatihani Nuswil Bernolian Nuswil Bernolian Nyayu Latifah Husni Nyayu Latifah Husni, Nyayu Latifah Oky Budiyarti Osvari Arsalan Passa, Rahma Satila Patiyus Agustiansyah PATIYUS AGUSTIANSYAH, PATIYUS Pola Risma PP Aditya, PP, Aditya, PP Pratama, Jimiria Putri Mirani Rachmamtullah, Muhammad Naufal Radiyati Umi Partan Radiyati Umi Partan Radiyati Umi Partan Radiyati Umi Partan, Radiyati Umi Rahma Satila Passa Rendy Isdwanta Renny Amalia Pratiwi Reza Firsandaya Malik Reza Firsandaya Malik Ria Nova Ricy Firnando Ricy Firnando Ricy Firnando Rizal Sanif Rizki Kurniati Rossi Passarella Sahat Pangidoan Samsuryadi Samsuryadi Saparudin Saparudin Saparudin, Saparudin Sapitri, Ade Iriani Saputra, Tommy Sari, Dwi Mei Rita Sarifah Putri Raflesia Sarifah Putri Raflesia, Sarifah Putri Sastradinata, Irawan Sigit Prasetyo Noprianto Siti Zaiton Siti Zaiton M. Hashim Soedjana, Hardi Siswo Sri Desy Siswanti Suci Dwi Lestari Suci Dwi Lestari Suhandono, Nugroho Sukemi Sukemi Sukemi Sukemi Sukemi Sukman Tulus Putra Sutarno Sutarno Syamsul Arifin Syaputra, Hadi Tio Artha Nugraha Tresna Dewi Tresna Dewi Tri Undari Triadi, Agus Triadi, Agus Varindo Ockta Keneddi Putra Velia Yuliza Winda Kurnia Sari Wisnu Adi Putra Yani, Iryadi Yesi Novaria Kunang Yurni Oktarina Zaqqi Yamani