Mustafa Maad Hamdi
Universiti Tun Hussein Onn Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

VANET-Based Traffic Monitoring and Incident Detection System: A Review Mustafa Maad Hamdi; Lukman Audah; Sami Abduljabbar Rashid; Sameer Alani
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp3193-3200

Abstract

As a component of intelligent transport systems (ITS), vehicular ad hoc network (VANET), which is a subform of manet, has been identified. It is established on the roads based on available vehicles and supporting road infrastructure, such as base stations. An accident can be defined as any activity in the environment that may be harmful to human life or dangerous to human life. In terms of early detection, and broadcast delay. VANET has shown various problems. The available technologies for incident detection and the corresponding algorithms for processing. The present problem and challenges of incident detection in VANET technology are discussed in this paper. The paper also reviews the recently proposed methods for early incident techniques and studies them.
A hybrid technique for single-source shortest path-based on A* algorithm and ant colony optimization Sameer Alani; Atheer Baseel; Mustafa Maad Hamdi; Sami Abduljabbar Rashid
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 2: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (686.995 KB) | DOI: 10.11591/ijai.v9.i2.pp356-363

Abstract

In the single-source shortest path (SSSP) problem, the shortest paths from a source vertex v to all other vertices in a graph should be executed in the best way. A common algorithm to solve the (SSSP) is the A* and Ant colony optimization (ACO). However, the traditional A* is fast but not accurate because it doesn’t calculate all node's distance of the graph. Moreover, it is slow in path computation. In this paper, we propose a new technique that consists of a hybridizing of A* algorithm and ant colony optimization (ACO). This solution depends on applying the optimization on the best path. For justification, the proposed algorithm has been applied to the parking system as a case study to validate the proposed algorithm performance. First, A*algorithm generates the shortest path in fast time processing. ACO will optimize this path and output the best path. The result showed that the proposed solution provides an average decreasing time performance is 13.5%.
A review on various security attacks in vehicular ad hoc networks Mustafa Maad Hamdi; Lukman Audah; Mohammed Salah Abood; Sami Abduljabbar Rashid; Ahmed Shamil Mustafa; Hussain Mahdi; Ahmed Shakir Al-Hiti
Bulletin of Electrical Engineering and Informatics Vol 10, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i5.3127

Abstract

Ad hoc vehicle networks (VANET) are being established as a primary form of mobile ad hoc networks (MANET) and a critical infrastructure to provide vehicle passengers with a wide range of safety applications. VANETs are increasingly common nowadays because it is connecting to a wide range of invisible services. The security of VANETs is paramount as their future use must not jeopardize their users' safety and privacy. The security of these VANETs is essential for the benefit of secure and effective security solutions and facilities, and uncertainty remains, and research in this field remains fast increasing. We discussed the challenges in VANET in this survey. Were vehicles and communication in VANET are efficient to ensure communication between vehicles to vehicles (V2V), vehicles to infrastructures (V2I). Clarified security concerns have been discussed, including confidentiality, authentication, integrity, availableness, and non-repudiation. We have also discussed the potential attacks on security services. According to analysis and performance evaluations, this paper shows that the ACPN is both feasible and appropriate for effective authentication in the VANET. Finally, the article found that in VANETs, encryption and authentication are critical.
A collaborated genetic with lion optimization algorithms for improving the quality of forwarding in a vehicular ad-hoc network Sami Abduljabbar Rashid; Mustafa Maad Hamdi; Lukman Audah; Mohammed Ahmed Jubair; Mustafa Hamid Hassan; Mohammed Salah Abood; Salama A. Mostafa
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v12.i2.pp667-677

Abstract

Vehicular ad-hoc network (VANET) is dynamic and it works on various noteworthy applications in intelligent transportation systems (ITS). In general, routing overhead is more in the VANETs due to their properties. Hence, need to handle this issue to improve the performance of the VANETs. Also due to its dynamic nature collision occurs. Up till now, we have had immense complexity in developing the multi-constrained network with high quality of forwarding (QoF). To solve the difficulties especially to control the congestion this paper introduces an enhanced genetic algorithmbased lion optimization for QoF-based routing protocol (EGA-LOQRP) in the VANET network. Lion optimization routing protocol (LORP) is an optimization-based routing protocol that can able to control the network with a huge number of vehicles. An enhanced genetic algorithm (EGA) is employed here to find the best possible path for data transmission which leads to meeting the QoF. This will result in low packet loss, delay, and energy consumption of the network. The exhaustive simulation tests demonstrate that the EGA-LOQRP routing protocol improves performance effectively in the face of congestion and QoS assaults compared to the previous routing protocols like Ad hoc on-demand distance vector (AODV), ant colony optimization-AODV (ACO-AODV) and traffic aware segmentAODV (TAS-AODV).