Lukman Audah
Universiti Tun Hussein Onn Malaysia

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

VANET-Based Traffic Monitoring and Incident Detection System: A Review Mustafa Maad Hamdi; Lukman Audah; Sami Abduljabbar Rashid; Sameer Alani
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp3193-3200

Abstract

As a component of intelligent transport systems (ITS), vehicular ad hoc network (VANET), which is a subform of manet, has been identified. It is established on the roads based on available vehicles and supporting road infrastructure, such as base stations. An accident can be defined as any activity in the environment that may be harmful to human life or dangerous to human life. In terms of early detection, and broadcast delay. VANET has shown various problems. The available technologies for incident detection and the corresponding algorithms for processing. The present problem and challenges of incident detection in VANET technology are discussed in this paper. The paper also reviews the recently proposed methods for early incident techniques and studies them.
Design and development of handover simulator model in 5G cellular network Abdulkarem Basil Abdulkarem; Lukman Audah
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp3310-3318

Abstract

In the modern era of technology, the high speed internet is the most important part of human life. The current available network is reckoned to be slow in speed and not be up to snuff for data transmission regarding business applications. The objective of handover mechanism is to reassign the current session handle by internet gadget. The globe needs the next generation high mobility and throughput performance based internet model. This research paper explains the proposed method of design and development for handover based 5G cellular network. In comparison to the traditional method, we propose to control the handovers between base-stations using a concentric method. The channel simulator is applied over the range of the frequencies from 500 MHz to 150 GHz and radio frequency for the 700 MHz bandwidth. The performance of the simulation system is calculated on the basis of handover preparation and completion time regarding base station as well as number of users. From this experiment we achieve the 7.08 ms handover preparation time and 9.98 ms handover completion time. The author recommended the minimum handover completion time, perform the high speed for 5G cellular networks.
UFMC system performance improvement using RS codes for 5G communication system Ghasan Ali Hussain; Lukman Audah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 4: August 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i4.15703

Abstract

Fifth generation (5G) mobile communication is expected to be deployed in several countries by 2020. Where, the data consumptions are expected to be increased to 30% thus, it cannot be supported by the present technologies 3G and 4G. In contrast, looking for new alternative modulation techniques of orthogonal frequency division modulation (OFDM) system which is suffering from high Peak to Average Power Ratio (PAPR) and out of band (OOB) side lobes are needed to use in 5G communication system. Hence, Universal Filtered Multi-Carrier (UFMC) is considered as alternative waveform to overcome of OFDM disadvantages. In communication systems, channel coding is considered vital part, where error correction codes (ECC) are used to detect and correct the errors which is occurring in channel noise. In this paper, RS codes are suggested with UFMC system to achieve the reliability of information transmission over noisy channels. The results showed that although, the values of PAPR levels for using RS codes in UFMC increased to 8.8653dB against 6.9735 dB for OFDM system. However, there are significant improvements in BER performance owing to use RS codes against uncoded-UFMC system. Furthermore, the values of OOB in UFMC system was lower than OFDM system.
RS Codes for Downlink LTE System over LTE-MIMO Channel Ghasan Ali Hussain; Lukman Audah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 6: December 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i6.9177

Abstract

Nowdays, different applications require a modern generation of mobile communication systems; long term evolution (LTE) is a candidate to achieve this purpose. One important challenge in wireless communications, including LTE systems, is the suitable techniques of controlling errors that degrade system performance in transmission systems over multipath fading channels. Different forward Error correction (FEC) techniqes are required to improve the robustness of transmission channels. In this paper, Reed-Solomon (RS) codes were used with a downlink LTE system over a LTE-MIMO channel. This research contributes by combining RS codes that have low decoding complexity (by using hard decision decoding) with a LTE-MIMO channel to improve downlink LTE system performance. The results show that using RS codes clearly improves LTE system performance and thus decreases Bit Error Rates (BER) more than convolutional and turbo codes which have high decoding complexity. Lastly, the results show also extra improvements of downlink LTE system performance by increasing the number of antennas of the LTE-MIMO channel.
Pilot reuse sequences for TDD in downlink multi-cells to improve data rates Adeeb Salh; Lukman Audah; Nor S. M. Shah; Shipun A. Hamzah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 5: October 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i5.12809

Abstract

The exponential growth in demand for high data rate transmission to users in fifth generation wireless networks, focus there has been a particular research focus on new techniques that achievable high data rate by suppressing interference between neighboring cells. In this paper, we propose that system performance can be improved by using perfect channel estimation and reducing effective interference with pilot reuse that mitigate strong pilot contamination based on the knowledge of large-scale fading coefficients. We derived the lower bounds on the achievable data rate in downlink by analyzing the performance of the zero-forcing precoding method and derive the signal-to-interference noise ratio to mitigate interference between neighboring cells. From the simulation results, the large pilot reuse sequences improved the achievable data rate and provided better estimation for a channel. When the number of users is large, the interference between neighboring cells can be suppressed by using orthogonal pilot reuse sequences.
A review on various security attacks in vehicular ad hoc networks Mustafa Maad Hamdi; Lukman Audah; Mohammed Salah Abood; Sami Abduljabbar Rashid; Ahmed Shamil Mustafa; Hussain Mahdi; Ahmed Shakir Al-Hiti
Bulletin of Electrical Engineering and Informatics Vol 10, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i5.3127

Abstract

Ad hoc vehicle networks (VANET) are being established as a primary form of mobile ad hoc networks (MANET) and a critical infrastructure to provide vehicle passengers with a wide range of safety applications. VANETs are increasingly common nowadays because it is connecting to a wide range of invisible services. The security of VANETs is paramount as their future use must not jeopardize their users' safety and privacy. The security of these VANETs is essential for the benefit of secure and effective security solutions and facilities, and uncertainty remains, and research in this field remains fast increasing. We discussed the challenges in VANET in this survey. Were vehicles and communication in VANET are efficient to ensure communication between vehicles to vehicles (V2V), vehicles to infrastructures (V2I). Clarified security concerns have been discussed, including confidentiality, authentication, integrity, availableness, and non-repudiation. We have also discussed the potential attacks on security services. According to analysis and performance evaluations, this paper shows that the ACPN is both feasible and appropriate for effective authentication in the VANET. Finally, the article found that in VANETs, encryption and authentication are critical.
BCH codes in UFMC: A new contender candidate for 5G communication systems Ghasan Ali Hussain; Lukman Audah
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.2080

Abstract

Nowadays, fifth generation (5G) wireless network is considered one of the most important research topics in wireless industry and it will be substituting with fourth generation (4G) in several aspects. Although the robustness of orthogonal frequency division multiplexing (OFDM) system against channel delays which is the reason behind using it in LTE/LTE Advanced however, it is suffering from high peak to average power ration (PAPR) and out of band side lobes. So, universal filtered multi-carrier (UFMC) technique is considered a new modulation scheme for 5G wireless communication system to overcome on the common OFDM demits. In contrast, to achieve reliable data transmission in digital communication systems, using error correcting codes are considered an essential over noisy channels. In this paper, BCH code has been used for UFMC system over AWGN. The results showed that using BCH codes in UFMC contributed in enhancing BER performance while could decreasing both of PAPR and OOBE values better than conventional OFDM system.
UFMC and f-OFDM: Contender Waveforms of 5G Wireless Communication System Ghasan Ali Hussain; Lukman Audah
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 2: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2040

Abstract

Because of the increased demand for high data rates, looking for using new technologies that meet these requirements are considered a necessary. Hence, Fifth Generation (5G) is expected to be impressive in offering these requirements and implement around 2020. Orthogonal Frequency Division Multiplexing (OFDM) is considered a main technology of LTE wireless communication standards. Due to its suffering from high Bit Error Rate (BER) and Peak Average Power Ratio (PAPR), OFDM doesn't consider as charming solution for future wireless communications and several emerging applications of 5G. Moreover, high Out of Band Emission (OOBE) and inability of supporting the flexible numerology are other demerits of OFDM systems. Thus, looking for alternative waveforms which have the ability of solving OFDM disadvantages are necessary to introduce it as contender candidate for 5G wireless communication systems. In this paper, both of Filtered-OFDM (f-OFDM) and Universal Filtered Multi carrier (UFMC) systems have been discussed for 5G wireless communication systems and compared to OFDM system. The results showed that f-OFDM system is better than both OFDM and UFMC systems and could be introducing as competitive candidate for 5G wireless communication systems because of its ability of reducing OOBE and enhancing BER performance.