Younes Balboul
Sidi Mohamed Ben Abdellah University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design of a microstrip antenna patch with a rectangular slot for 5G applications operating at 28 GHz Salah-Eddine Didi; Imane Halkhams; Mohammed Fattah; Younes Balboul; Said Mazer; Moulhime El Bekkali
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 20, No 3: June 2022
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v20i3.23159

Abstract

In this paper, we present a study and design of a rectangular-shaped microstrip patch antenna with a rectangular shaped slot at the operating frequency is 28GHz, for fifth generation (5G) wireless applications, using the microstrip line technique for feeding. The objective of this slot is to contribute to the improvement of antenna performance. This antenna is built on a Roger RT duroid 5880 type substrate having a relative permittivity equal to 2.2, a height of h = 0.5 mm, and a loss tangent of 0.0009. The compact size of this antenna is 4.2 mm × 3.3 mm × 0.5 mm. The simulations of this antenna were performed using high-frequency structure simulator (HFSS) and computer simulation technology (CST) software whose main purpose is to confirm the results obtained for this proposed antenna. The results obtained during these simulations are as follows: resonant frequency of 27.97 GHz and reflection coefficient ) of -20.95 dB, bandwidth of 1.06 GHz, a gain of 7.5 dB, radiated power of 29.9 dBm, and efficiency of 99.83%. These results obtained by this proposed antenna are better than those obtained from already existing antennas that are published in current scientific journals. Consequently, this antenna is likely to satisfy the needs for 5G wireless communication applications.
New microstrip patch antenna array design at 28 GHz millimeter-wave for fifth-generation application Salah-Eddine Didi; Imane Halkhams; Abdelhafid Es-Saqy; Mohammed Fattah; Younes Balboul; Said Mazer; Moulhime El Bekkali
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp4184-4193

Abstract

This paper presents a study and an array design consisting of two microstrip patch antennas connected in series in a 2×1 form. This antenna provides better performance for the fifth-generation (5G) wireless communication system. The microstrip line feeding technique realizes the design of this antenna. This feed offers the best bandwidth, is easy to model, and has low spurious radiation. The distance between the feed line and the patch can adapt to the antenna’s impedance. In addition, the antenna array proposed in this paper is designed and simulated using the high frequency structure simulator (HFSS) simulation software at the operating frequency of 28 GHz for the 5G band. The support material used is Rogers RT/duroid® 5880, with relative permittivity of 2.2, a thickness of h=0.5 mm, and a loss tangent of 0.0009. The simulation results obtained in this research paper are as: reflection coefficient: -35.91 dB, standing wave ratio (SWR): 1.032, bandwidth: 1.43 GHz, gain: 9.42 dB, directivity: 9.47 dB, radiated power: 29.94 dBm, accepted the power: 29.99 dBm, radiation efficiency: 29.95, efficiency: 99.83%. This proposed antenna array has achieved better performance than other antenna arrays recently published in scientific journals regarding bandwidth, beam gain, reflection coefficient, SWR, radiated power, accepted power, and efficiency. Therefore, this antenna array will likely become an important competitor for many uses within the 5G wireless applications.