Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design and performance analysis of PV grid-tied system with energy storage system Jerry Kumar; Nanik Ram Parhyar; Manoj Kumar Panjwani; Danish Khan
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1077-1085

Abstract

With the increasing demand for solar energy as a renewable source has brought up new challenges in the field of energy. However, one of the main advantages of photovoltaic (PV) power generation technology is that it can be directly connected to the grid power generation system and meet the demand of increasing energy consumption. Large-scale PV grid-connected power generation system put forward new challenges on the stability and control of the power grid and the grid-tied photovoltaic system with an energy storage system. To overcome these problems, the PV grid-tied system consisted of 8 kW PV array with energy storage system is designed, and in this system, the battery components can be coupled with the power grid by AC or DC mode. In addition, the feasibility and flexibility of the maximum power point tracking (MPPT) charge controller are verified through the dynamic model built in the residential solar PV system. Through the feasibility verification of the model control mode and the strategy control, the grid-connected PV system combined with reserve battery storage can effectively improve the stability of the system and reduce the cost of power generation. To analyze the performance of the grid-tied system, some real-time simulations are performed with the help of the system advisor model (SAM) that ensures the satisfactory working of the designed PV grid-tied System.
Design and simulation of Lidar based control system for wind turbine Atif Iqbal; Deng Ying; Faheem Akhter; Manoj Kumar Panjwani; Danish Khan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp542-550

Abstract

Renewable energy sources could be the main contributor to fulfilling the world’s energy requirement. Wind energy is grabbing the world’s attention due to its abundant nature and reliability. Wind energy is a prominent renewable energy source due to its availability and higher reliability. Despite the aforementioned benefits, there are some challenges such as wind measurement and prediction due to the turbulent nature of the wind. Lidar (light detection and ranging) technology is used in wind turbines to preview the wind and act it accordingly. Wind speed along with the direction is measured by the Lidar before it reaches the wind turbine plane and the control system of the wind turbine utilizes this data for optimal results. It enhances the control system along with it optimizes the output power. This paper presents the Lidar simulation model, which previews the wind earlier than the conventional feedback method. The Lidar simulation model is prepared and implemented on the horizontal axis wind turbine. The simulation is performed in GH Bladed at a 2.0 MW wind turbine. The output results are analyzed with the former method. The power extracted, pitch angle, rotor torque obtained from the proposed methodology proves its efficacy.