Claim Missing Document
Check
Articles

Found 2 Documents
Search

Investigation of Thermal Conductivity and Dynamics Viscosity of Green Nanofluids (ZrO2-SiO2) Ramadhan, Anwar Ilmar; Saptaji, Kushendarsyah; Hendrawati, Tri Yuni; Sari, Alvika Meta; Umar, Efrizon; Aziz, Azmairit; Semendo, Rifqi Putra; Setiawan, Hanif Rama Yuda; Firmansyah, Firmansyah
Jurnal Teknologi Vol 16, No 2 (2024): Jurnal Teknologi
Publisher : Fakultas Teknik Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24853/jurtek.16.2.301-312

Abstract

In recent years, research has been directed towards improving the thermophysical properties of single-component nanofluids. Therefore, hybrid or composite nanofluids are developed to improve heat transfer performance. The thermophysical properties of ZrO2-SiO2 nanoparticles suspended in a mixture of water (W) and ethylene glycol (EG) with vol 60:40 or Green Nanofluids for various volume concentrations were investigated. Experiments were performed for volume concentrations of 0.1, 0.2, and 0.3% of green nanofluids at 50, 60, 70, and 80°C. Measurements of thermal conductivity and dynamic viscosity are performed at temperatures ranging from 50-80°C. The highest thermal conductivity of the green nanofluids is obtained at a concentration of 0.3%, and the maximum increase is up to 37.5% higher than the base fluid (EG/W). Meanwhile, evidence from the dynamic viscosity of green nanofluids is affected by concentration and temperature. Furthermore, the green nanofluids behave as a Newtonian fluid in a volume concentration of 0.1-0.3%. In conclusion, the combination of increased thermal conductivity and dynamic viscosity at a concentration of 0.3% has optimal conditions, which has more advantages for heat transfer than at other concentrations.
Experimental investigation on stability and thermal conductivity of SiO2 nanoparticles as green nanofluids for application thermal system Ramadhan, Anwar Ilmar; Umar, Efrizon; Hendrawati, Tri Yuni; Sari, Alvika Meta; Rahardja, Istianto Budhi; Aziz, Azmairit; Firmansyah, Firmansyah; Yulianto, Sulis; Azmi, Wan Hamzah
SINERGI Vol 28, No 3 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2024.3.018

Abstract

In the last few years, much research has focused on the stability and improvement of the thermo-physical properties of single-component nanofluids. Some studies have not made many improvements to the stability and thermophysical properties of various types of green nanofluids from several variations of nanoparticles. Green nanofluids must be developed to improve heat transfer performance from their stability and thermal conductivity factors. Stability and thermal conductivity of Nano-silicate suspended in a base mixture of water /ethylene glycol with the ratio of 60:40, different volume concentrations were investigated. The experiments carried out were the stability of the green nanofluids investigated for volume concentrations of 0.1~0.3% and temperature conditions from 30 to 70°C for thermal conductivity measurement using TEMPOS Thermal Properties Analyzer. The experimental results showed that the stability analysis of the green nanofluids prepared by the UV-Vis method was stable up to 30 days after preparation with a sonication time of 1 hour with a ratio of 70-80%. The evaluation of the zeta potential for green nanofluids obtained a value of 33.57 mV with a moderate stability classification. The highest thermal conductivity for the green nanofluids was obtained at 0.3%, and the maximum increase was 17% higher than that of the base liquid (W/EG). Green nanofluids with a concentration of 0.1% gave the lowest effective thermal conductivity of 1.09 time at 70°C.