Aruna Kumari D
KLEF Deemed University Vaddeswaram

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Business intelligence analytics using sentiment analysis-a survey Prakash P. Rokade; Aruna Kumari D
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 1: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (858.652 KB) | DOI: 10.11591/ijece.v9i1.pp613-620

Abstract

Sentiment analysis (SA) is the study and analysis of sentiments, appraisals and impressions by people about entities, person, happening, topics and services. SA uses text analysis techniques and natural language processing methods to locate and extract information from big data. As most of the people are networked themselves through social websites, they use to express their sentiments through these websites.These sentiments are proved fruitful to an individual, business, government for making decisions. The impressions posted on different available sources are being used by organization to know the market mood about the services they are providing. Analyzing huge moods expressed with different features, style have raised challenge for users. This paper focuses on understanding the fundamentals of sentiment analysis, the techniques used for sentiment extraction and analysis. These techniques are then compared for accuracy, advantages and limitations. Based on the accuracy for expexted approach, we may use the suitable technique.
Business recommendation based on collaborative filtering and feature engineering – aproposed approach Prakash Pandharinath Rokade; Aruna Kumari D
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (463.855 KB) | DOI: 10.11591/ijece.v9i4.pp2614-2619

Abstract

Business decisions for any service or product depend on sentiments by people. We get these sentiments or rating on social websites like twitter, kaggle.  The mood of people towards any event, service and product are expressed in these sentiments or rating. The text of sentiment contains different linguistic features of sentence. A sentiment sentence also contains other features which are playing a vital role in deciding the polarity of sentiments. If features selection is proper one can extract better sentiments for decision making. A directed preprocessing will feed filtered input to any machine learning approach. Feature based collaborative filtering can be used for better sentiment analysis. Better use of parts of speech (POS) followed by guided preprocessing and evaluation will minimize error for sentiment polarity and hence the better recommendation to the user for business analytics can be attained.