Farah Diyana Abdul Rahman
International Islamic University Malaysia

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Fuzzy Logic based Edge Detection Method for Image Processing Abdulrahman Moffaq Alawad; Farah Diyana Abdul Rahman; Othman O. Khalifa; Norun Abdul Malek
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (585.043 KB) | DOI: 10.11591/ijece.v8i3.pp1863-1869

Abstract

Edge detection is the first step in image recognition systems in a digital image processing. An effective way to resolve many information from an image such depth, curves and its surface is by analyzing its edges, because that can elucidate these characteristic when color, texture, shade or light changes slightly. Thiscan lead to misconception image or vision as it based on faulty method. This work presentsa new fuzzy logic method with an implemention. The objective of this method is to improve the edge detection task. The results are comparable to similar techniques in particular for medical images because it does not take the uncertain part into its account.
Reduced-Reference Video Quality Metric Using Spatial Information in Salient Regions Farah Diyana Abdul Rahman; Dimitris Agrafiotis; Othman O. Khalifa; Fan Zhang
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 3: June 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i3.9036

Abstract

In multimedia transmission, it is important to rely on an objective quality metric which accurately represents the subjective quality of processed images and video sequences. Maintaining acceptable Quality of Experience in video transmission requires the ability to measure the quality of the video seen at the receiver end. Reduced-reference metrics make use of side-information that is transmitted to the receiver for estimating the quality of the received sequence with low complexity. This attribute enables real-time assessment and visual degradation detection caused by transmission and compression errors. A novel reduced-reference video quality known as the Spatial Information in Salient Regions Reduced Reference Metric is proposed. The approach proposed makes use of spatial activity to estimate the received sequence distortion after concealment. The statistical elements analysed in this work are based on extracted edges and their luminance distributions. Results highlight that the proposed edge dissimilarity measure has a good correlation with DMOS scores from the LIVE Video Database.
Design and comparison of printed antennas using meander line technique Nur Hamizah Muhamad Mokhtar; Norun Abdul Malek; Ahmad Zamani Jusoh; Khamis Ali; Farah Nadia Mohd Isa; Farah Diyana Abdul Rahman
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (780.916 KB) | DOI: 10.11591/eei.v8i2.1499

Abstract

The interest for compact antennas in wireless communication increase due to the portability and mobility of the communication devices. Generally, an antenna at low frequency exhibits in large physical size. This project investigates the design of an antenna at 400 MHz. The simulation of the antenna has been performed using CST MWS. Since medical applications are dealing with low frequency, it will lead to large size of antenna which brings a challenge for wireless personal area network (WPAN). It is well known that the antenna performance decreases (according to Chu’s equation) as the size of antenna decreases. Therefore, antenna miniaturization using Meander Line (ML) will be taking place to overcome the challenges. Thus, this paper presents a comparison between i) printed dipole antenna without meander line technique, ii) printed dipole with meander line technique and iii) printed monopole antenna with meander line technique. The results show that an estimation of reduction size by 50% can be achieved using Meander Line technique.
Development of Face Recognition on Raspberry Pi for Security Enhancement of Smart Home System Teddy Surya Gunawan; Muhammad Hamdan Hasan Gani; Farah Diyana Abdul Rahman; Mira Kartiwi
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 5, No 4: December 2017
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v5i4.361

Abstract

Nowadays, there is a growing interest in the smart home system using Internet of Things. One of the important aspect in the smart home system is the security capability which can simply lock and unlock the door or the gate. In this paper, we proposed a face recognition security system using Raspberry Pi which can be connected to the smart home system. Eigenface was used the feature extraction, while Principal Component Analysis (PCA) was used as the classifier. The output of face recognition algorithm is then connected to the relay circuit, in which it will lock or unlock the magnetic lock placed at the door. Results showed the effectiveness of our proposed system, in which we obtain around 90% face recognition accuracy. We also proposed a hierarchical image processing approach to reduce the training or testing time while improving the recognition accuracy.
Design and comparison of printed antennas using meander line technique Nur Hamizah Muhamad Mokhtar; Norun Abdul Malek; Ahmad Zamani Jusoh; Khamis Ali; Farah Nadia Mohd Isa; Farah Diyana Abdul Rahman
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (780.916 KB) | DOI: 10.11591/eei.v8i2.1499

Abstract

The interest for compact antennas in wireless communication increase due to the portability and mobility of the communication devices. Generally, an antenna at low frequency exhibits in large physical size. This project investigates the design of an antenna at 400 MHz. The simulation of the antenna has been performed using CST MWS. Since medical applications are dealing with low frequency, it will lead to large size of antenna which brings a challenge for wireless personal area network (WPAN). It is well known that the antenna performance decreases (according to Chu’s equation) as the size of antenna decreases. Therefore, antenna miniaturization using Meander Line (ML) will be taking place to overcome the challenges. Thus, this paper presents a comparison between i) printed dipole antenna without meander line technique, ii) printed dipole with meander line technique and iii) printed monopole antenna with meander line technique. The results show that an estimation of reduction size by 50% can be achieved using Meander Line technique.
Design and comparison of printed antennas using meander line technique Nur Hamizah Muhamad Mokhtar; Norun Abdul Malek; Ahmad Zamani Jusoh; Khamis Ali; Farah Nadia Mohd Isa; Farah Diyana Abdul Rahman
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (780.916 KB) | DOI: 10.11591/eei.v8i2.1499

Abstract

The interest for compact antennas in wireless communication increase due to the portability and mobility of the communication devices. Generally, an antenna at low frequency exhibits in large physical size. This project investigates the design of an antenna at 400 MHz. The simulation of the antenna has been performed using CST MWS. Since medical applications are dealing with low frequency, it will lead to large size of antenna which brings a challenge for wireless personal area network (WPAN). It is well known that the antenna performance decreases (according to Chu’s equation) as the size of antenna decreases. Therefore, antenna miniaturization using Meander Line (ML) will be taking place to overcome the challenges. Thus, this paper presents a comparison between i) printed dipole antenna without meander line technique, ii) printed dipole with meander line technique and iii) printed monopole antenna with meander line technique. The results show that an estimation of reduction size by 50% can be achieved using Meander Line technique.