Farah Nadia Mohd Isa
International Islamic University Malaysia

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Design and comparison of printed antennas using meander line technique Nur Hamizah Muhamad Mokhtar; Norun Abdul Malek; Ahmad Zamani Jusoh; Khamis Ali; Farah Nadia Mohd Isa; Farah Diyana Abdul Rahman
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (780.916 KB) | DOI: 10.11591/eei.v8i2.1499

Abstract

The interest for compact antennas in wireless communication increase due to the portability and mobility of the communication devices. Generally, an antenna at low frequency exhibits in large physical size. This project investigates the design of an antenna at 400 MHz. The simulation of the antenna has been performed using CST MWS. Since medical applications are dealing with low frequency, it will lead to large size of antenna which brings a challenge for wireless personal area network (WPAN). It is well known that the antenna performance decreases (according to Chu’s equation) as the size of antenna decreases. Therefore, antenna miniaturization using Meander Line (ML) will be taking place to overcome the challenges. Thus, this paper presents a comparison between i) printed dipole antenna without meander line technique, ii) printed dipole with meander line technique and iii) printed monopole antenna with meander line technique. The results show that an estimation of reduction size by 50% can be achieved using Meander Line technique.
Design and comparison of printed antennas using meander line technique Nur Hamizah Muhamad Mokhtar; Norun Abdul Malek; Ahmad Zamani Jusoh; Khamis Ali; Farah Nadia Mohd Isa; Farah Diyana Abdul Rahman
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (780.916 KB) | DOI: 10.11591/eei.v8i2.1499

Abstract

The interest for compact antennas in wireless communication increase due to the portability and mobility of the communication devices. Generally, an antenna at low frequency exhibits in large physical size. This project investigates the design of an antenna at 400 MHz. The simulation of the antenna has been performed using CST MWS. Since medical applications are dealing with low frequency, it will lead to large size of antenna which brings a challenge for wireless personal area network (WPAN). It is well known that the antenna performance decreases (according to Chu’s equation) as the size of antenna decreases. Therefore, antenna miniaturization using Meander Line (ML) will be taking place to overcome the challenges. Thus, this paper presents a comparison between i) printed dipole antenna without meander line technique, ii) printed dipole with meander line technique and iii) printed monopole antenna with meander line technique. The results show that an estimation of reduction size by 50% can be achieved using Meander Line technique.
Design and comparison of printed antennas using meander line technique Nur Hamizah Muhamad Mokhtar; Norun Abdul Malek; Ahmad Zamani Jusoh; Khamis Ali; Farah Nadia Mohd Isa; Farah Diyana Abdul Rahman
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (780.916 KB) | DOI: 10.11591/eei.v8i2.1499

Abstract

The interest for compact antennas in wireless communication increase due to the portability and mobility of the communication devices. Generally, an antenna at low frequency exhibits in large physical size. This project investigates the design of an antenna at 400 MHz. The simulation of the antenna has been performed using CST MWS. Since medical applications are dealing with low frequency, it will lead to large size of antenna which brings a challenge for wireless personal area network (WPAN). It is well known that the antenna performance decreases (according to Chu’s equation) as the size of antenna decreases. Therefore, antenna miniaturization using Meander Line (ML) will be taking place to overcome the challenges. Thus, this paper presents a comparison between i) printed dipole antenna without meander line technique, ii) printed dipole with meander line technique and iii) printed monopole antenna with meander line technique. The results show that an estimation of reduction size by 50% can be achieved using Meander Line technique.
Design of Wilkinson power divider at 28 GHz for 5G applications Nurfarhana Nabila Ridzuan; Norun Farihah Abdul Malek; Farah Nadia Mohd Isa; Md. Rafiqul Islam; Ku Chui Choon Ivan; Nidal Qasem
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1444-1450

Abstract

A power divider plays a significant function in antenna’s feeding network. Many types of power divider exist yet there are only a few existing studies of Wilkinson power dividers at high frequencies (28 GHz) for 5G communications systems. This paper presents a tapered 2-way Wilkinson power divider that operates in Malaysia's 5G wireless communication band (28 GHz). CST microwave studio is used to design, simulate, and optimize the tapered 2-way Wilkinson divider. The simulation results show resonance around 23.5-37.9 GHz. The operating frequency of 28 GHz resulted in power division with a 3.2 dB insertion loss and has an isolation of 19.21 dB. The design can be made wideband with equal power division at each output port by adding an extra resistor along the tapered line to reduce output return loss and isolation, as demonstrated in this paper.
Simulation of Packet Scheduling in Cognitive Long Term Evolution-Advanced Mohamad ‘Ismat Hafizi Mansor; Huda Adibah Mohd Ramli; Ani Liza Asnawi; Farah Nadia Mohd Isa
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 2: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i2.pp533-540

Abstract

Real Time (RT) and Non-Real Time (NRT) multimedia content demand on mobile devices are increasing at a high pace. Long Term Evolution-Advanced (LTE-A) is expected to cater these demands. However, LTE-A operates at fixed spectrum which leads to spectrum scarcity. Cognitive Radio (CR) is one the promising technologies that is used to overcome spectrum scarcity and implementation of CR into LTE-A will improve spectrum availability and efficiency of the network. Furthermore, with addition of Packet Scheduling (PS) in the cognitive LTE-A, QoS requirement of the mobile users can be guaranteed. However, the study on the stated is very limited. Thus, this paper models, simulates and evaluates performance of five well-known PS algorithms for supporting the RT and NRT multimedia contents. The simulation results show that Maximum- Largest Weighted Delay First (M-LWDF) is the best candidate for implementation in the cognitive LTE-A.