Claim Missing Document
Check
Articles

Found 2 Documents
Search

Speed control of an SPMSM using a tracking differentiator-PID controller scheme with a genetic algorithm Noor Hameed Hadi; Ibraheem Kasim Ibraheem
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1728-1741

Abstract

In this paper, a tracking differentiator-proportional integral and derivative (TD-PID) control scheme is proposed to control the speed of a surface mount permanent magnet synchronous motor (SPMSM). The TD is used to generate the necessary transient profile for both the reference and the output speed, which are compared with each other to produce the error signals that feed into the PID controller. In addition to the TD unit parameters, the PID controller’s parameters are tuned to achieve the optimum new multi-objective performance index, comprised of the integral of the time absolute error (ITAE), the absolute square of the control energy signal (USQR), and the absolute value of the control energy signal (UABS) and utilizing a genetic algorithm (GA). A nonlinear model of the SPMSM is considered in the design and the performance of the proposed TD-PID scheme was validated by comparing its performance with that of a traditional PI controller in a MATLAB environment. Different case studies were tested to show the effectiveness of the proposed scheme, results including peak overshoot, energy consumption, control signal chatter, and 30% improvement in the OPI, with variable reference speeds, load torque, and parameters uncertainties. Illustrate the proposed scheme's success compared with PI controller.
Finite-Time Control of Wing-Rock Motion for Delta Wing Aircraft Based on Whale-Optimization Algorithm Arif A. Al-Qassar; Abdulkareem Sh. Mahdi Al-Obaidi; Alaq F. Hasan; Amjad J. Humaidi; Ahmed R. Nasser; Ahmed Alkhayyat; Ibraheem Kasim Ibraheem
Indonesian Journal of Science and Technology Vol 6, No 3 (2021): IJOST: VOLUME 6, ISSUE 3, December 2021
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/ijost.v6i3.37922

Abstract

The rise of wing-rock motion in delta-wing aircraft has an adverse effect on the manoeuvrability of aircraft and it may result in its crash. This study presents a finite-time control design to tackle the dynamic motion due to the Wing-Rock effect in delta-wing aircraft. The control design is developed based on the methodology of Super Twisting Sliding Mode Control (STSMC). The Lyapunov stability analysis has been pursued to ensure asymptotic convergence of errors and to determine the finite time. The design of STSMC leads to the appearance of design parameters, which have a direct impact on the dynamic performance of the controlled system. To avoid the conventional tuning of these parameters and to have an optimal performance of the proposed controller, a modern optimization technique has been proposed based on Wale Optimization Algorithm. A comparison study between optimal and non-optimal finite-time super twisting sliding mode controllers has been established and their effectiveness has been verified via numerical simulation using MATLAB programming format.