Ahmed R. Nasser
University of Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Finite-Time Control of Wing-Rock Motion for Delta Wing Aircraft Based on Whale-Optimization Algorithm Arif A. Al-Qassar; Abdulkareem Sh. Mahdi Al-Obaidi; Alaq F. Hasan; Amjad J. Humaidi; Ahmed R. Nasser; Ahmed Alkhayyat; Ibraheem Kasim Ibraheem
Indonesian Journal of Science and Technology Vol 6, No 3 (2021): IJOST: VOLUME 6, ISSUE 3, December 2021
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/ijost.v6i3.37922

Abstract

The rise of wing-rock motion in delta-wing aircraft has an adverse effect on the manoeuvrability of aircraft and it may result in its crash. This study presents a finite-time control design to tackle the dynamic motion due to the Wing-Rock effect in delta-wing aircraft. The control design is developed based on the methodology of Super Twisting Sliding Mode Control (STSMC). The Lyapunov stability analysis has been pursued to ensure asymptotic convergence of errors and to determine the finite time. The design of STSMC leads to the appearance of design parameters, which have a direct impact on the dynamic performance of the controlled system. To avoid the conventional tuning of these parameters and to have an optimal performance of the proposed controller, a modern optimization technique has been proposed based on Wale Optimization Algorithm. A comparison study between optimal and non-optimal finite-time super twisting sliding mode controllers has been established and their effectiveness has been verified via numerical simulation using MATLAB programming format.
Embedded Design and Implementation of Mobile Robot for Surveillance Applications Abdulkareem Sh. Mahdi Al-Obaidi; Arif Al-Qassar; Ahmed R. Nasser; Ahmed Alkhayyat; Amjad J. Humaidi; Ibraheem K. Ibraheem
Indonesian Journal of Science and Technology Vol 6, No 2 (2021): IJOST: VOLUME 6, ISSUE 2, September 2021
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/ijost.v6i2.36275

Abstract

The surveillance and security of areas such as home, laboratory, office, factory, and airports, are important to prevent any threatening to human lives. Mobile robots are proven their effectiveness in a large number of applications, especially in hazardous areas where they can be remotely controlled by humans to accomplish certain tasks. This research paper presents a design and implementation of a mobile robot for surveillance and security applications. The main objective of the design is to lower the cost and the power consumption of the mobile robot which accomplish using low-cost open-source hardware such as Arduino and Raspberry Pi. The robot is connected wirelessly via a low-power ZigBee module to the control station to allow the operator for controlling the mobile robot motions and monitoring the physical events in the environment where the robot is used.  Sensors such as camera, temperature, and range are embedded in the robot to sense and monitor human motion, the room temperature, and the distance of the surrounding obstacles. The testing of the implemented mobile robot shows that it can run continuously for approximately 6.5 hours at a motor shaft speed 25 rpm of unlit the need to recharge the battery.