My Hanh Nguyen Thi
Industrial University of Ho Chi Minh City

Published : 31 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 31 Documents
Search

Using flat phosphor layer in dual-layer remote phosphor configuration to improve luminous efficacy My Hanh Nguyen Thi; Phung Ton That; Tri-Vien Vu
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.16349

Abstract

The phosphor layer shape and components distances are the subjects proposed to advance the quality of WLEDs in this article. The two distances, between phosphor layers (d1) and between the phosphor layer and the LED chip (d2) in Flat dual-remote phosphor (FDRP) and Concave dual-remote phosphor (CDRP) were examined by experiments to determine their impacts on WLEDs lighting performances. The results suggest that FDRP is a better option than CDRP for lighting performance. In each respective structure, the distances influence the lighting capacity and color output whenever they fluctuate. Therefore, to effectively control and study this phenomenon, the correlated color temperature is maintained at 8500 K, and the concentration of phosphor material is altered while the distances are changing. When d1 and d2 are at the starting value of 0, the recorded lumen output and chromatic performance of lighting devices are the lowest and begin to increase as d1 and d2 expand. Bigger d1 and d2 mean bigger scattering area and better chromatic light integration, which leads to higher color quality. Detailed results present that optimal values of d1 or d2 for the highest lumen output of 1020 lm are 0.08 mm or 0.63 mm, respectively. Meanwhile the lowest color deviation is accomplished with d1=0.64 mm or d2=1.35 mm.
The application of green YF3:Er3+,Yb3+ and red MgSr3Si2O8:Eu2+,Mn2+ layers to remote phosphor LED My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.13827

Abstract

White light-emitting diodes (WLEDs) with quantum dots (QDs) and phosphor have pulled in huge consideration because of their incredible shading rendering capacity. In the bundling procedure, a QDs film and a phosphor silicone layer will in general be isolated for lessening the reabsorption misfortunes and keeping the QDs surface molecules in a good condition. This examination explored the bundling succession of QDs and phosphor layers to the optical and warm exhibitions of WLEDs. The emitted optical power and PL spectra were estimated and dissected, while an infrared warm imager was utilized to reenact and approve tentatively the temperature fields. The results reveal that at 60 mA, WLEDs with green QDs-on-phosphor type accomplished lumen output (LO) of 1578 lm, with shading rendering record (CRI) of Ra = 60, while the red QDs-on-phosphor type WLEDs exhibited lower LO of 1000 lm, with Ra = 82. In addition, the QDs-onphosphor type WLEDs generated less warmth than the other, and as a result, the most noteworthy temperature in this packaged type was lower than the other. Additionally, its temperature contrast can arrive at 12.3°C. Along these lines, regarding bundling arrangement, the QDs-on-phosphor type is an ideal bundling design to better the optical productivity and shading rendering capacity, as well as lower gadget temperature.
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote phosphor LED My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.13647

Abstract

Remote phosphor structure is commonly limited in color quality, but has greater luminous flux when comparing to structures with in-cup or conformal coating. From this dilemma, various researches with advance modifications have been proposed to perfect the chromatic performance of remote structure. In this research, we reach higher color quality by obtaining better values in quality indcators such as color rendering index (CRI) and color quality scale (CQS) with the dual-layer phosphor in our remote white light-emitting diodes (WLEDs). The idea is to ultize WLEDs with 7000 K correlated color temperature (CCT) and create dual-layer configuration with yellow phosphor YAG:Ce3+ under green phosphor YPO4:Ce3+,Tb3+ or red phosphor LiLaO2:Eu3+. After that, we search for suitable concentration of LiLaO2:Eu3+ for addition in order to acquire the finest color quality. The result shows that WLED with LiLaO2:Eu3+ has better CRI and CQS as the higher the concentration of LiLaO2:Eu3+, the larger CRI and CQS due to increased light scattered in WLEDs. Meanwhile, the green phosphor layer YPO4:Ce3+,Tb3+ give advantages to luminous flux. However, the reduction in luminous flux and color quality occurs when the concentration of LiLaO2:Eu3+ and YPO4:Ce3+,Tb3+ over increase. Results are verified by Mie theory and Beer’s Law and can be applied to practical manufacturing of high quality WLEDs.
Enhancement of luminous flux and color quality of white light-emitting diodes by using green (Y,Gd)BO3:Tb3+ phosphor My Hanh Nguyen Thi; Phung Ton That; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.15746

Abstract

In the study, we analyzed and clarified the effect of green (Y,Gd)BO3:Tb3+ phosphor on chromatic homogeneity and optical performance of multi-chip white LEDs (MCW-LED). Thereby there is a solution to get the best luminous efficiency. In addition, (Y,Gd)BO3:Tb3+ is known as one of the factors that has a significant impact on lighting performance, so it needs to add the (Y,Gd)BO3:Tb3+ phosphor in the structure of LEDs to combine with the yellow phosphor YAG:Ce3+ to receive the best results. Therefore, the concentration and size of (Y,Gd)BO3:Tb3+ should be choose carefully so that the presentation of MCW-LEDs would be more incredible. The results show that when the concentration of green-emitting (Y,Gd)BO3:Tb3+ phosphor tends to increase, it also helps the color homogeneity and the lumen efficiency of MCW-LEDs with the average correlated color temperature (CCT) of 5600 K-8500 K become better.
MgCeAl11O19:Tb3+ and Mg8Ge2O11F2:Mn4+ in enhancing the color quality of remote phosphor LED My Hanh Nguyen Thi; Phung Ton That
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.14479

Abstract

As the name infers, the triple-layer remote phosphor (TRP) has 3 phosphor layers includes the red Mg8Ge2O11F2:Mn4+ phosphor layer on the top, the green MgCeAl11O19:Tb3+ phosphor layer in the middle, and the yellow YAG:Ce3+ layer at the bottom and is mentioned as a solution to increase the chromaticity and luminescence adequacy of the white LEDs (WLEDs) in this article. As to control the red light for higher value achieve in the color rendering index (CRI), using red Mg8Ge2O11F2:Mn4+ phosphor in the TRP structure is recommended. All the outcomes indicate that when red phosphor Mg8Ge2O11F2:Mn4+ concentration grows the CRI gets higher values, and drastically declines when the concentration of green phosphor MgCeAl11O19:Tb3+ increases. As the same time, applying the green MgCeAl11O19:Tb3+ phosphor layer to manage the green light as it can make the luminous efficacy (LE) of WLEDs increase. In particular, the index of LE can also be improved over 40% by limiting the scatter of light and putting in green light. Moreover, to preserve the average correlated color temperature (ACCT) stable at 8500K, the yellow YAG:Ce3+ concentration must be cut down as the concentration of red and green phosphor rise.
The analysis of MF resin and CaCO3 diffuser-loaded encapsulations to enhance the homogeneity of correlated color temperature for phosphor-converted LEDs My Hanh Nguyen Thi; Phung Ton That
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 2: April 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i2.16519

Abstract

The most popular method used in the production of phosphor-converted LEDs (pc-LEDs) is dispensing phosphor freely. However, this method is inferior in generating good angular correlated color temperature (CCT) homogeneity. Thus, in this article, a diffuser-loaded encapsulation is proposed as a potential solution for better CCT uniformity. The paper provides a detailed investigation on how melamine formaldehyde (MF) resin and CaCO3 loaded encapsulations impact the uniformity of CCT, as well as the lumen efficacy of pc-LEDs. The results demonstrate that between MF resin and CaCO3 loaded encapsulations, the MF resin yields a higher light diffusion efficiency while the CaCO3 maintains greater lumen efficacy. The photon scattering development is the key force behind the enhancement of the angular CCT uniformity in pc-LEDs’ output when using the loaded encapsulations of MF resin and CaCO3 particles. Since this package utilized mineral, it has reasonable cost and is quite easy to control while still being effective in enhancing the angular CCT homogeneity of pc-LEDs. Diffusers with 1% concentration of MF resin or 10% concentration of CaCO3 are determined as an optimal solution for reducing the variance of angular CCT and increasing the lumen output.
The impacts of red-emitting phosphor Mg8Ge2O11F2:Mn4+ on the color rendering index of convex-dual-layer remote phosphor WLEDs at 5600 K My Hanh Nguyen Thi; Phung Ton That; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.15832

Abstract

The poor color rendering index (CRI) induced by mono chip and phosphor configuration in the conventional white-light light-emitting diode (LED) urges for developments in both packaging and material, thus, a modern lighting solution was introduced. The dual-layer phosphor package is an innovative configuration that can retain the lumen output of conventional white light emitting diode (WLED) while also enhancing color quality. The structure of dual-layer phosphor package that was proposed includes two chips and one phosphor. The priority in this research is to keep improving the lighting properties of WLED, therefore, further experiments with this dual-chips and dual-phosphor package are conducted. The lighting properties of LED are measured multiple times with its nitride-based phosphor being altered in proportions and densities each occasion, the results are calculated with a color design model made specifically to monitor and adjust the color of white-light from LED to match desired outcome. The WLED at 5600 K correlated color temperature (CCT) is the sole research object of the experiments. The measured parameters from the 5600 K WLED and the color coordinates of CIE 1931 simulated from the color design model show that 0.0063 is the highest possible discrepancy at 5600 K (CCT). The information from this manuscript provide the manufacturers with the most efficient approach to create a white LED that has good color quality, high CRI and luminous flux.
Enhancing optical properties of WLEDs with LaOF:Eu3+&SiO2 application Phuc Dang Huu; My Hanh Nguyen Thi
Bulletin of Electrical Engineering and Informatics Vol 11, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i1.2910

Abstract

After many efforts, the core-shell nanostructure of LaOF:Eu3+ and SiO2 that emits bright red radiation can be fabricated by simple solvothermal application succeeded by heat treatment. The resulted particles from the fabrication process are small in size, able to demonstrate circular form more efficient and prevent stacking. Photoluminescence (PL) emission spectra exhibits intense peaks at 593 nm, 611 nm, 650 nm corresponds to 5D0 -- more than 7FJ (J = 0, 1 and 2) Eu3+ transitions respectively. The spectral intensity parameters and Eu-O ligand behaviors are estimated by means of Judd-Ofelt (J-O) theory. CIE co-ordinates are found to be (x = 0.63, y = 0.36) which is very close to standard NTSC values (x = 0.67, y = 0.33). CCT value is 3475 K which is less than 5000 K, as a result this phosphor is suitable for warm light emitting diodes. The optimized core-shell SiO2 (coat III)@LaOF:Eu3+ (5 mol%) was used as a fluorescent labeling marker to identity latent fingerprints on both porous and non-porous surfaces. The fingerprints results are highly sensitive, selective and also has no obstruction caused by the back-ground which supports level-I to level-III fingerprint ridge recognition. The experiments outcomes suggest that the enhancements brought by the core-shell NS structure can be further examined to apply in forensic and solid state lightning applications.
Decreasing CCT deviation of white light emitting diodes by employing SiO2 nanoparticles My Hanh Nguyen Thi; Phung Ton That
Bulletin of Electrical Engineering and Informatics Vol 10, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i3.3041

Abstract

In this research, the SiO2 nano-particles (NPs) usage in enhancing optical performances of InGaN/GaN-based white light-emitting diodes (WLEDs) with remote phosphor structure. The research subject shows better lighting capacity than the white LEDs devices without the space between the layers. The adjustment in development process resulted in enhancements of internal quantum efficiency (IQE) and light extraction efficiency (LEE) that lead to 13.5% luminous efficacy improvement. From the experiments, it can be concluded that the LEE is affected by the trapped light and enhancing the light output with SiO2 scattering properties reduce the amount of trapped light. These results confirm that SiO2 nano-particles is effective in enhancing the optical performance of WLEDs and can be considered for production of higher quality devices.
Employing SiO2 nano-particles in conformal and in-cup structures of 8500 K white LEDs My Hanh Nguyen Thi; Phung Ton That
Bulletin of Electrical Engineering and Informatics Vol 10, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i3.3042

Abstract

SiO2 nano-particles have been examined in a distant phosphor structure for the elevated luminous quality and better consistency of white light-emitting diodes with angular-dependent associated color temperature (CCT). The luminous scattering ability could be increased by applying SiO2 nano-particles contain silicone to the outside of the phosphorus coating. In specific, the strength of blue light at wide angles is increased and differences in CCT can be minimized. In addition, owing to the sufficient refractive indices of silicone-containing SiO2 nanoparticles between the air and phosphorus layers, the luminous flux was improved. This new configuration decreases angular-dependent CCT deviations in the range of -700 to 700 from 1000 to 420 K. In comparison, at a 120 mA driving current, the rise of lumen flux increased by 2.25% relative to an usual distant phosphor structure without SiO2 nano-particles. As a result, in a distant phosphor structure, the SiO2 nano-particles could not only enhance the uniformity of illumination but also enhance the output of light.