Maizatul Alice Meor Said
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

A systematic optimization procedure of antenna miniaturization for efficient wireless energy transfer Mohamad Harris Misran; Sharul Kamal Abdul Rahim; Maizatul Alice Meor Said; Mohd Azlishah Othman
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (699.154 KB) | DOI: 10.11591/ijece.v9i4.pp3159-3166

Abstract

This paper presents a systematic optimization procedure to determine the reduced antenna size aimed at obtaining the best efficiency or at least equal performance with the initial large antenna design in a wireless energy transfer (WET) system. A low-cost, square-shaped planar loop antenna designed on each side of FR4 substrate is used as both the miniature transmitter and receiver antennas operating at 13.56 MHz for the near-field communication (NFC) band. The effect of distance and antenna size on the link parameters such as inductance, resistance and mutual coupling is studied, prior to the study of their effects on WTE. The accuracy of the procedure is cross-validated using two methods; analytically and using full wave simulations. The simulation then is verified using lab measurement setup at real scene environment. Trends of the resulting curves using both methods indicated good agreements, and optimal miniature antenna for the best wireless transfer efficiency (WTE) is able to be quickly determined. A miniature antenna is able to achieve 4% wireless transfer efficiency improvement with 47% antenna size reduction. Such method can be applied to efficiently estimate a low-cost WTE system setup, besides enabling the integration of self-tuning or reconfigurability features in such systems for a known initial antenna size to mitigate changes to its operating distance.
Dual-band aperture coupled antenna with harmonic suppression capability Faza Syahirah Mohd Noor; Zahriladha Zakaria; Herwansyah Lago; Maizatul Alice Meor Said
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11598

Abstract

The paper presents an aperture-coupled dual-band linearly-polarized antenna with harmonic suppression capability, operating at frequency 2.45 GHz and 5.00 GHz. In purpose of improving the directivity of antenna at the operating frequency of 2.45 GHz and 5.00 GHz, a modified inverted π-shaped slot-etched patch on the lower layer of the stacked antenna is introduced alongside the 50 Ω feed line. The harmonic suppression capability is achieved by the introduction of U-slot and asymmetrical left-right-handed stub at the transmission feed line, suppressing unwanted harmonic signals from 6.00 GHz up to 10.00 GHz. The final design of the antenna has produced very good reflection coefficient of -18.87 dB at 2.45 GHz and -19.57 dB at 5.00 GHz with third and higher order harmonic suppression up to -4 dB.
2.45 GHz rectenna with high gain for RF energy harvesting Maizatul Alice Meor Said; Zahriladha Zakaria; Mohd Nor Husain; Mohamad Harris Misran; Faza Syahirah Mohd Noor
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11592

Abstract

This paper presents a high gain rectenna at 2.45 GHz. Two layers low cost FR4 substrate has been used with air-gap technology for this fabricated rectenna. The proposed designs contain antenna and  open stub rectifying circuits with feedline. With the dimension of 100 x 100 x 5 mm3, this rectenna can perform high gain. The technique of air gap approach has been used for this proposed rectenna design so as to increase the antenna gain. Second and third harmonics has been eliminated by the introducing of triangular slot and ground plane to the developed design. The proposed rectenna successfully achieved the output voltages reaches 0.46 V when the input power is 0 dBm respectively when  the input power range is between -25 to 30 dBm. It is also can reach up to 6V when the maximum input power is applied. High gain, simple design, low profile and easy integration are the main advantages of this design of the rectenna when compared to past researchers.