Herwansyah Lago
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A Compact Reconfigurable Dual Band-Notched Ultra-Wideband Antenna using Varactor Diodes Sam Weng Yik; Zahriladha Zakaria; Herwansyah Lago; Noor Azwan Shairi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 6: December 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i6.11552

Abstract

In this paper, a reconfigurable dual band-notched ultra-wideband (UWB) antenna is presented. The antenna design consists of a circular shape with two pairs of the L-resonator. To realize the notch characteristics in WLAN at 5.2 GHz and 5.8 GHz bands, the half wavelength of the L-resonator is introduced in the design. The T-shaped notch is etched in the ground to enhance the bandwidth which covers the UWB operating frequency range from 3.219 – 10.863 GHz. The proposed reconfigurable dual band-notched UWB antenna shows good impedance matching for the simulated in the physical layout. Furthermore, the proposed antenna has a compact size of 37.6 x 28 mm2. This proposed reconfigurable design can provide an alternative solution for the wireless system in the designing of a band-notched antenna with a good tuning capability.
Dual-band aperture coupled antenna with harmonic suppression capability Faza Syahirah Mohd Noor; Zahriladha Zakaria; Herwansyah Lago; Maizatul Alice Meor Said
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11598

Abstract

The paper presents an aperture-coupled dual-band linearly-polarized antenna with harmonic suppression capability, operating at frequency 2.45 GHz and 5.00 GHz. In purpose of improving the directivity of antenna at the operating frequency of 2.45 GHz and 5.00 GHz, a modified inverted π-shaped slot-etched patch on the lower layer of the stacked antenna is introduced alongside the 50 Ω feed line. The harmonic suppression capability is achieved by the introduction of U-slot and asymmetrical left-right-handed stub at the transmission feed line, suppressing unwanted harmonic signals from 6.00 GHz up to 10.00 GHz. The final design of the antenna has produced very good reflection coefficient of -18.87 dB at 2.45 GHz and -19.57 dB at 5.00 GHz with third and higher order harmonic suppression up to -4 dB.