Adel Al-Jumaily
University of Technology

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

PSO-SVM hybrid system for melanoma detection from histo-pathological images Maen Takruri; Mohamed Khaled Abu Mahmoud; Adel Al-Jumaily
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (712.709 KB) | DOI: 10.11591/ijece.v9i4.pp2941-2949

Abstract

This paper introduces an automated system for skin cancer (melanoma) detection from Histo-pathological images sampled from microscopic slides of skin biopsy. The proposed system is a hybrid system based on Particle Swarm Optimization and Support Vector Machine (PSO-SVM). The features used are extracted from the grayscale image histogram, the co-occurrence matrix and the energy of the wavelet coefficients resulting from the wavelet packet decomposition. The PSO-SVM system selects the best feature set and the best values for the SVM parameters (C and γ) that optimize the performance of the SVM classifier.   The system performance is tested on a real dataset obtained from the Southern Pathology Laboratory in Wollongong NSW, Australia. Evaluation results show a classification accuracy of 87.13%, a sensitivity of 94.1% and a specificity of 80.22%.The sensitivity and specificity results are comparable to those obtained by dermatologists.
Myoelectric Control Systems for Hand Rehabilitation Device: A Review Khairul Anam; Ahmad Adib Rosyadi; Bambang Sujanarko; Adel Al-Jumaily
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 4: EECSI 2017
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (286.72 KB) | DOI: 10.11591/eecsi.v4.1054

Abstract

One of the challenges of the hand rehabilitation device is to create a smooth interaction between the device and user. The smooth interaction can be achieved by considering myoelectric signal generated by human's muscle. Therefore, the so-called myoelectric control system (MCS) has been developed since the 1940s. Various MCS's has been proposed, developed, tested, and implemented in various hand rehabilitation devices for different purposes. This article presents a review of MCS in the existing hand rehabilitation devices. The MCS can be grouped into main groups, the non-pattern recognition and pattern recognition ones. In term of implementation, it can be classified as MCS for prosthetic and exoskeleton hand. Main challenges for MCS today is the robustness issue that hampers the implementation of MCS on the clinical application.
Comparison of EEG Pattern Recognition of Motor Imagery for Finger Movement Classification Khairul Anam; Mohammad Nuh; Adel Al-Jumaily
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 6: EECSI 2019
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v6.2014

Abstract

The detection of a hand movement beforehand can be a beneficent tool to control a prosthetic hand for upper extremity rehabilitation. To be able to achieve smooth control, the intention detection is acquired from the human body, especially from brain signal or electroencephalogram (EEG) signal. However, many constraints hamper the development of this brain-computer interface (BCI, especially for finger movement detection). Most of the researchers have focused on the detection of the left and right-hand movement. This article presents the comparison of various pattern recognition method for recognizing five individual finger movements, i.e., the thumb, index, middle, ring, and pinky finger movements. The EEG pattern recognition utilized common spatial pattern (CSP) for feature extraction. As for the classifier, four classifiers, i.e., random forest (RF), support vector machine (SVM), k-nearest neighborhood (kNN), and linear discriminant analysis (LDA) were tested and compared to each other. The experimental results indicated that the EEG pattern recognition with RF achieved the best accuracy of about 54%. Other published publication reported that the classification of the individual finger movement is still challenging and need more efforts to make the best performance.