Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparison of one and two time constant models for lithium ion battery B. V. Rajanna; Malligunta Kiran Kumar
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (793.458 KB) | DOI: 10.11591/ijece.v10i1.pp670-680

Abstract

The fast and accurate modeling topologies are very much essential for power train electrification. The importance of thermal effect is very important in any electrochemical systems and must be considered in battery models because temperature factor has highest importance in transport phenomena and chemical kinetics. The dynamic performance of the lithium ion battery is discussed here and a suitable electrical equivalent circuit is developed to study its response for sudden changes in the output. An effective lithium cell simulation model with thermal dependence is presented in this paper. One series resistor, one voltage source and a single RC block form the proposed equivalent circuit model. The 1 RC and 2 RC Lithium ion battery models are commonly used in the literature are studied and compared. The simulation of Lithium-ion battery 1RC and 2 RC Models are performed by using Matlab/Simulink Software. The simulation results in his paper shows that Lithium-ion battery 1 RC model has more maximum output error of 0.42% than 2 RC Lithium-ion battery model in constant current condition and the maximum output error of 1 RC Lithium-ion battery model is 0.18% more than 2 RC Lithium-ion battery model in UDDS Cycle condition. The simulation results also show that in both simple and complex discharging modes, the error in output is much improved in 2 RC lithium ion battery model when compared to 1 RC Lithium-ion battery model. Thus the paper shows for general applications like in portable electronic design like laptops, Lithium-ion battery 1 RC model is the preferred choice and for automotive and space design applications, Lithium-ion 2 RC model is the preferred choice. In this paper, these simulation results for 1 RC and 2 RC Lithium-ion battery models will be very much useful in the application of practical Lithium-ion battery management systems for electric vehicle applications.
Comparison study of lead-acid and lithium-ıon batteries for solar photovoltaic applications B. V. Rajanna; Malligunta Kiran Kumar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1069-1082

Abstract

The battery energy storage systems are very essential for maintaining constant power supply when using solar photovoltaic systems for power generation. The viability and ability of battery energy storage systems are assessed based on battery usage in Solar Photovoltaic utility grid-connected systems. The power supply quality and reliability are improved by utilizing battery energy storage technologies in conjunction with solar photovoltaic systems. This paper presents a comparative analysis of Lead-Acid Storage battery and Lithium-ion battery banks connected to a utility grid. The battery mathematical model simulation study gives their performance characteristics of these batteries under grid-connected loads. Cost-benefit analysis of battery usage for determining the best battery suitable for solar photovoltaic system applications is also presented in this paper.
Dynamic model development for lead acid storage battery B. V. Rajanna; Malligunta Kiran Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp609-619

Abstract

It is widely accepted that electrochemical batteries ensure superior energy storage and reliability of power supply. This paper proposes to discuss the dynamic performance of the Lead Acid Storage battery and to develop an Electrical Equivalent circuit and study its response to sudden changes in the output. A detailed explanation of the discharging process for lead-acid storage batteries and the factors affecting the rate of chemical reactions is provided. The objective of the study is to find the reduction in terminal voltage due to the change in reaction rate and to evolve a simple dynamic model for discharge of the battery.