M. K. A. Rahim
Universiti Teknologi Malaysia

Published : 17 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Dual element MIMO planar inverted-F antenna for 5G millimeter wave application H. M. R. Nurul; Z. Mansor; M. K. A. Rahim
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12762

Abstract

This work presents a 28 GHz Dual Element Multiple Input Multiple Output (MIMO) Planar Inverted-F Antenna for millimeter wave 5G mobile terminal. The antenna design employs PIFA design concept as it is a common antenna type use for mobile phone as it provides wide bandwidth and good performance. The antenna design begins with a characterization of the single element PIFA design and then extended to Dual Element MIMO PIFA design. The single element PIFA design is enhanced to MIMO design by extending the ground plane and locate the second PIFA at the other end. Isolation between the antenna elements of the MIMO PIFA is analyzed by varying the gap distance between the antenna elements. The result for Envelope Correlation Coefficient, Diversity Gain and Multiplexing Efficiency is also presented. The simulation computed using Computer Simulation Technology (CST) Microwave Studio software.
Switchable Wideband Metamaterial Absorber and AMC reflector for X-band Applications and Operations M. M. Gajibo; M. K. A. Rahim; N. A. Murad; O. Ayop; H. A. Majid
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 4: August 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i4.9065

Abstract

A single layered metamaterial structure with capabilities of switching from a wideband metamaterial absorber to an AMC reflector and vice versa is presented in this paper. A flame retardant 4 substrate with physical thickness of 1.60mm was used. The absorption rate, reflection rate, reflection phase and surface current distribution were studied and discussed. The operational incidental wave angles were varied from 0o to 65o. A peak reflection of about 90% was achieved at 11.20 GHz with a usable bandwidth (-90 to +90) of 3.01 GHz by the AMC reflector. The metamaterial absorber demonstrated a wideband performance (from 8.10 GHz to 14.30 GHz). It achieved 100% absorption at 11.20 GHz and not less than 65
Wide to multiband elliptical monopole reconfigurable antenna for multimode systems applications I. H. Idris; M. R. Hamid; K. Kamardin; M. K. A. Rahim
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12764

Abstract

Wideband-multiband reconfigurable elliptical monopole antenna is investigated in this paper. By having conventional elliptical monopole antenna, wideband operating frequency is obtained. With the combination of dual pairs of slotted arms and a band-pass filter on the ground plane of the elliptical monopole, multiband is achieved. Dual-band operating frequencies at 1.6 GHz and 2.6 GHz while wideband operates from 3.35 GHz to 9 GHz. Therefore, wide range of wireless communication systems is obtained from the proposed antenna to support the multiband mode (i.e. GPS and LTE) and UWB systems. Frequency reconfigurable is achieved by controlling the switches integrated on the antenna structure. Simulated results of reflection coefficient, radiation patterns and gain performance are presented. The proposed antenna design is suitable candidate for different wireless communication applications.
Fractal Yagi-Uda antenna for WLAN applications Amerrul Zabri; M. K. A. Rahim; F. Zubir; N. M. Nadzir; H. A. Majid
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 5: October 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i5.12797

Abstract

This paper describes the development of a Fractal printed Yagi-Uda antenna for Wireless Local Area Network (WLAN) applications operating at 2.4 GHz frequency. In miniaturizing the dimensions of an antenna, fractal method is applied where the 1st iteration and 2nd iteration is implemented. The Computer Simulation Technology (CST) software is used as the platform to design and simulate the antenna. The substrate material used is the FR-4 board which has a dielectric constant of 5.4, the thickness of 1.6mm and tangent loss of 0.019. The antenna performance interm of the reflection coefficient, radiation pattern and gain are compared and analyzed. For the 1st iteration, 22.81% of reduction size has been achieved and 30.81% reduction of the antenna size for 2nd iteration has been achieved.
Meander bowtie Antenna for Wearable Application N. Othman; N. A. Samsuri; M. K. A. Rahim; K. Kamardin; H. A. Majid
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 4: August 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i4.9061

Abstract

This paper proposes a flexible compact bowtie antenna for medical application that operates at 2.45 GHz. The proposed antennas are miniaturized using meander technique. Both substrates and conducting material of the antenna are made of flexible material semi-transparent film as the substrate and shieldit fabric as the conducting material which suitable for wearable and on body application. The results show that the total length of the antenna is significantly reduced by up to 38%. However, the gain of the antenna is slightly decreased when the size of the antenna become smaller. The results of this research could provide guidance and has significant implication for future development of wearable electronics especially in medical monitoring application.