M. F. Ismail
Universiti Tun Hussein Onn Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

45 degree arrangement of compact array antenna for MIMO application M. F. Ismail; H. A. Majid; C. Macwright; M. N. A. H. Shaabani; M. S. Mohd; M. M. Zahar; F. Zubir; M. A. Abdullah
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp838-844

Abstract

A study on the compact array microstrip patch antenna for multiple-input multiple-output (MIMO) communication system based on the antenna arrangement is performed. The 2.45 GHz rectangular array are arranged in 45 degree slanted inward and outward for each other to reduce the mutual coupling effect between the patches. The antenna properties are analyzed and compact antenna design is determined based on the simulation results. The results show the antennas can very compact while maintaining low mutual coupling. The gain of the MIMO antenna is 11.3 dBi. The simulated and tested return losses, together with the radiation patterns, are presented and discussed.
Dual band low loss metamaterial structure at millimetre wave band B. A. F. Esmail; H. A. Majid; M. F. Ismail; S. H. Dahlan; Z. Z. Abidin; M. K. A. Rahim
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp823-830

Abstract

In this paper, the Dual band modified split square resonator (MSSR) metamaterial (MM) structure was designed and numerically investigated at millimetre wave (mm-Wave) frequency range. The proposed structure operated at two resonance frequencies 28 GHz and 32.54 GHz. The dual-band behaviour of the proposed structure because of the self and mutual coupling between two metallic squares of the structure. Furthermore, The MSRR structure performed very well at both resonance frequencies by providing high transmission coefficient, S21, with a loss of -0.3 dB (0.97 linear scale) at lower resonance frequency 28 GHz and -0.18 dB (0.98 linear scale) at upper resonance frequency 32.54 GHz. In this regard, the numerical simulation was conducted to optimize the MSSR structure in such a way that the ratio of effective inductance-to-capacitance (L/C) was raised. As a result, the inherent MM losses were reduced. The robust retrieval algorithm was utilized to reconstruct the refractive index, effective permittivity, and effective permeability and to verify the left-hand property of the proposed structure. The simulation results showed that the MSSR unit cell introduces two regions of the negative refractive index below the lower resonance frequency, 28 GHz and above the upper resonance frequency, 32.54 GHz.