Raja Kumar Murugesan
Taylor's University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A data quarantine model to secure data in edge computing Poornima Mahadevappa; Raja Kumar Murugesan
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp3309-3319

Abstract

Edge computing provides an agile data processing platform for latency-sensitive and communication-intensive applications through a decentralized cloud and geographically distributed edge nodes. Gaining centralized control over the edge nodes can be challenging due to security issues and threats. Among several security issues, data integrity attacks can lead to inconsistent data and intrude edge data analytics. Further intensification of the attack makes it challenging to mitigate and identify the root cause. Therefore, this paper proposes a new concept of data quarantine model to mitigate data integrity attacks by quarantining intruders. The efficient security solutions in cloud, ad-hoc networks, and computer systems using quarantine have motivated adopting it in edge computing. The data acquisition edge nodes identify the intruders and quarantine all the suspected devices through dimensionality reduction. During quarantine, the proposed concept builds the reputation scores to determine the falsely identified legitimate devices and sanitize their affected data to regain data integrity. As a preliminary investigation, this work identifies an appropriate machine learning method, linear discriminant analysis (LDA), for dimensionality reduction. The LDA results in 72.83% quarantine accuracy and 0.9 seconds training time, which is efficient than other state-of-the-art methods. In future, this would be implemented and validated with ground truth data.
Classification of instagram fake users using supervised machine learning algorithms Kristo Radion Purba; David Asirvatham; Raja Kumar Murugesan
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (644.165 KB) | DOI: 10.11591/ijece.v10i3.pp2763-2772

Abstract

On Instagram, the number of followers is a common success indicator. Hence, followers selling services become a huge part of the market. Influencers become bombarded with fake followers and this causes a business owner to pay more than they should for a brand endorsement. Identifying fake followers becomes important to determine the authenticity of an influencer. This research aims to identify fake users' behavior, and proposes supervised machine learning models to classify authentic and fake users. The dataset contains fake users bought from various sources, and authentic users. There are 17 features used, based on these sources: 6 metadata, 3 media info, 2 engagement, 2 media tags, 4 media similarity. Five machine learning algorithms will be tested. Three different approaches of classification are proposed, i.e. classification to 2-classes and 4-classes, and classification with metadata. Random forest algorithm produces the highest accuracy for the 2-classes (authentic, fake) and 4-classes (authentic, active fake user, inactive fake user, spammer) classification, with accuracy up to 91.76%. The result also shows that the five metadata variables, i.e. number of posts, followers, biography length, following, and link availability are the biggest predictors for the users class. Additionally, descriptive statistics results reveal noticeable differences between fake and authentic users.