Le Van Dai
Industrial University of Ho Chi Minh City

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Grid search of multilayer perceptron based on the walk-forward validation methodology Tran Thanh Ngoc; Le Van Dai; Dang Thi Phuc
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1742-1751

Abstract

Multilayer perceptron neural network is one of the widely used method for load forecasting. There are hyperparameters which can be used to determine the network structure and used to train the multilayer perceptron neural network model. This paper aims to propose a framework for grid search model based on the walk-forward validation methodology. The training process will specify the optimal models which satisfy requirement for minimum of accuracy scores of root mean square error, mean absolute percentage error and mean absolute error. The testing process will evaluate the optimal models along with the other ones. The results indicated that the optimal models have accuracy scores near the minimum values. The US airline passenger and Ho Chi Minh city load demand data were used to verify the accuracy and reliability of the grid search framework.
Grid search of exponential smoothing method: a case study of Ho Chi Minh City load demand Ngoc Thanh Tran; Le Van Dai
Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v19.i3.pp1121-1130

Abstract

The exponential smoothing method is one of the widely used methods for load forecasting. The taxonomy of exponential smoothing method shows that its trend and seasonal component affect the results of exponential smoothing method. This paper proposed a framework for grid search with the optimal model of exponential smoothing method based on math formulas. The training process will specify the optimal models which satisfy requirement of minimum of akaike information criterion, accuracy scores of the root mean square error, mean absolute percentage error, and mean absolute error. The testing process will evaluate the accuracy scores between the optimal models and all other ones. The results indicated that the optimal models have accuracy scores near the minimum values. The load demand data collected in Ho Chi Minh City were used to verify the accuracy and reliability of the grid search framework.