Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optic Disc and Macula Localization from Retinal Optical Coherence Tomography and Fundus Image Rodiah Rodiah; Sarifuddin Madenda; Diana Tri Susetianigtias; Dewi Agushinta Rahayu; Ety Sutanty
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (586.83 KB) | DOI: 10.11591/ijece.v8i6.pp5050-5060

Abstract

This research used images from Optical Coherence Tomography (OCT) examination as well as fundus images to localize the optical disc and macular layer of retina. The researchers utilized the OCT and fundus image to interpret the distance between macular center and optic disc in the image. The distance will express the area of macula that can be employed for further research. This distance could recognize the thickness of macula parameters diameter that will be used in localizing process of optic disc and macula. The parameters are the circle radius, the size of window’s filter, the constant value and the size of optic disc element structure as well as the size of macula. The results of this study are expected to improve the accuracy of macula detection that experience the edema.
Implementation of the prophet model in COVID-19 cases forecast Rodiah Rodiah; Eka Patriya; Diana Tri Susetianingtias; Ety Sutanty
ILKOM Jurnal Ilmiah Vol 14, No 2 (2022)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v14i2.1219.99-111

Abstract

One of the steps to understanding this pandemic is to look at the spread of the data by predicting an increase in cases in various countries so that prevention can be carried out as early as possible. One way to see fluctuations in COVID-19 pandemic data is to predict the rate of cases using forecasting methods so that conclusions can be drawn on the spread of COVID-19 pandemic data around the world to be processed using statistical models. This study will implement the use of the Prophet Model in seeing the rate of development of COVID-19 in the world using four features in the forecasting process such as the number of confirmed cases, the number of cases of recovered patients, the number of cases of death, and the number of active cases. The results of this study produce forecasting data on the number of cases of the COVID-19 pandemic that can be viewed daily, weekly, and even monthly. Forecasting results show the first spike at the end of March until the number of cases reached around 10,275,800 million as of June 29, 2020, where the number of cases grew exponentially until June 29, 2020. The case rate of growth in many instances experienced significant growth until the end of October, touching the number in the range of 34,507,150 million as of October 25, 2020. After June 29, 2020, a very high spike was different from the increase in cases in the previous months. Forecasting results show no point decline because historical data on the number of daily confirmed cases of the COVID-19 pandemic has not decreased. The forecasting results in this study are expected to be able to systematically predict events or events that will occur in the COVID-19 pandemic around the world with the help of valid periodic data so that some information can be obtained for preventive measures related to the COVID-19 pandemic.