Huda A. Majid
Universiti Tun Hussein Onn Malaysia

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

Band-pass Filter with Harmonics Suppression Capability Izni Husna Idris; Mohamad Rijal Hamid; Kamilia Kamardin; Mohamad Kamal A. Rahim; Farid Zubir; Huda A. Majid
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 4: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (716.161 KB) | DOI: 10.11591/ijece.v8i4.pp2512-2520

Abstract

This paper presents a Band-pass Filter (BPF) with a very wide suppressions band. The filter design is based on a modified U-shaped slot. Two pair of U-shaped slots is used to ensure that the filter can suppress the unwanted frequencies up to 4th harmonics. In order to achieve sharp skirt, two transmission zeroes are created near the passband area. Additional transmission zeroes are introduced to deepen the stopband area. Therefore, the passband range starts from 1.3 to 3.3 GHz and the stopband range from 3.3 GHz up to 9 GHz are achieved. The filter performances are verified through simulated and measured results.
Switchable bandstop to allpass filter using cascaded transmission line SIW resonators in K-band Amirul Aizat Zolkefli; Noor Azwan Shairi; Badrul Hisham Ahmad; Adib Othman; Nurulhalim Hassim; Zahriladha Zakaria; Imran Mohd Ibrahim; Huda A. Majid
Bulletin of Electrical Engineering and Informatics Vol 10, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i5.2835

Abstract

In this paper, a switchable bandstop to allpass filter using cascaded transmission line SIW resonators is proposed. The switchable filter is performed by the switchable cascaded transmission line SIW resonators using discrete PIN diodes. Therefore, it can be used for rejecting any unwanted frequencies in the communication systems. The proposed filter design is operated in K-band and targeted for millimeter wave front end system for 5G telecommunication. Two filter designs with different orientation (design A and B) are investigated for the best performance and compact size. As a result, design B is the best by giving a maximum attenuation of 39.5 dB at 26.4 GHz with the layout size of 33×30 mm.
A compact triband microstrip antenna utilizing hexagonal CSRR for wireless communication systems Murtala Aminu- Baba; Mohamad Kamal A. Rahim; Farid Zubir; Mohd Fairus Mohd Yusoff; Adamu Y Iliyasu; Mohammed Mustapha Gajibo; Huda A. Majid; K. I Jahun
Bulletin of Electrical Engineering and Informatics Vol 9, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (773.846 KB) | DOI: 10.11591/eei.v9i5.2191

Abstract

In this paper, a compact triband printed antenna with hexagonal complementary split-ring resonators (CSRRs) for 4G applications is proposed. The proposed multiband antenna is comprised of a rectangular patch antenna on the top plane, while on the ground plane, hexagonal CSRRs are etched for size miniaturization (at the lower bands) and multiband generation. Another effect of the CSRR is the shifting of the initial resonance of the patch antenna from 5.17 GHz to the higher band of 6.18 GHz. The triband of 180 MHz 2.4~2.59, 150 MHz 2.79~2.94 and 420 MHz 6.04~6.46 GHz bands acquired can cover WLAN/Wi-Fi and WiMAX operating bands adequately. This can be achieved by choosing the optimal size and position of the CSRR on the ground plane carefully. The design occupies a total size of 45 x 45 mm2 using the low-cost FR-4 substrate. Good agreements are obtained between the measured results and the simulated, which are discussed and presented.
Effects of bending on a flexible metamaterial absorber Siti Nurzulaiha Isa; Osman Ayop; Abu Sahmah Mohd Supa’at; Mohammad Kamal A. Rahim; Noor Asniza Murad; Farid Zubir; Huda A. Majid
Bulletin of Electrical Engineering and Informatics Vol 9, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v9i6.2204

Abstract

This paper presents a study of bending a metamaterial based absorber. The study of bending is important for textile material since it can be easily crumpled. The basic absorber that is simulated for the study is an annulled circle as the top patch, and metal ground plane that sandwich a textile-based substrate. The center frequency for the absorber is 10.525 GHz. The type of bending is divided into two parts, which is convex bending and concave bending. Through series of simulations, the effects of the bending on the absorptivity and the shifting of the resonant frequency is observed. Also, the study on the change of incident and polarization angle is also included to support the basis of flexible metamaterial absorber affected by the bending.  
Substrate integrate waveguide and microstrip antennas at 28 GHz Yaqdhan Mahmood Hussein; Mohamad Kamal A. Rahim; Noor Asniza Murad; Mustafa Mohammed Jawad; Hatem O. Hanoosh; Huda A. Majid; Hussam H. A. Keriee
Bulletin of Electrical Engineering and Informatics Vol 9, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v9i6.2190

Abstract

In this paper, two antennas are designed using substrate integrated waveguide (SIW) and microstrip technology at 28 GHz. Parametric study for both antennas is presented to demonstrate the performance at millimeter wave frequency for wireless communication network (5G application). Roger RT5880 substrates with permittivity 2.2 and loss tangent 0.0009 are used to implement the antennas with two thicknesses of 0.508 mm and 0.127 mm respectively. Both antennas have the same size of substrate 12x12 mm with a full ground plane was used. Structures designs have been done by using computer simulation technology (CST). The simulation results showed that the antenna with SIW and roger RT 5880 substrate thickness 0.508 has better performance in term of return loss and radiation pattern than the microstrip patch antenna at 28 GHz. A return loss more than -10 dB and the gain are 6.4 dB obtained with wide bandwidth range of (27.4-28.7) GHz. This proving to increase the realized gain by implementing SIW at millimeter wave band for 5G application network.  
Video Monitoring Application using Wireless Sensor Node with Various External Antenna Amerrul Zabri; Mohamad Kamal A. Rahim; Farid Zubir; Norsaidah Muhamad Nadzir; Huda A. Majid
Indonesian Journal of Electrical Engineering and Computer Science Vol 6, No 1: April 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v6.i1.pp148-154

Abstract

Surveillance and monitoring has become very important for security reasons these days. The use of wireless sensor node device offers a variety of platform depends on the attached sensor. When an image sensor is attached, the wireless sensor node is capable of monitoring an area wirelessly. Since wireless environment uses antenna to transmit and receive data, antenna is an important component that affects the video monitoring performance. This paper describes a surveillance system using Raspberry Pi with various external antenna. The Raspberry Pi with Pi Camera module and various types of antennas was used for testing and experimentation in line-of-sight (LOS) and non-line-of-sight (NLOS) condition. The results revealed that the Yagi Uda antenna gives the best output in terms of its signal strength and average Receive (Rx) rate.
A multiband and wideband frequency reconfigurable slotted bowtie antenna Izni Husna Idris; Mohamad Rijal Hamid; Kamilia Kamardin; Mohamad Kamal A. Rahim; Huda A. Majid
Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v19.i3.pp1399-1406

Abstract

A multiband and wideband frequency reconfigurable antenna is presented. A wideband from 3.5 GHz to 9.0 GHz is achieved by introducing one stripline in the middle of a slotted bowtie antenna, whereas multiband is obtained by integrating an additional two slotted arms at the end of bowtie-shaped. As a result, the antenna operated at multiband mode (1.7 GHz and 2.6 GHz) and wideband mode (3.5 GHz to 9.0 GHz) simultaneously. The reconfigurability of the antenna is attained through switches. Five states are achieved with three  pairs of switches configurations. All results are presented and discussed, including S11, current distribution, radiation pattern, and gain. The antenna is suitable to be used in multimode communication systems.
On human body transmission wearable diamond dipole antennas above engineered jackets Muhammad Azfar bin Abdullah; Mohamad Kamal A. Rahim; Noor Asmawati Samsuri; Mohd Fairus; Mohd Khairul Hisham Ismail; Huda A. Majid
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i3.pp1513-1519

Abstract

This paper presents the propagation of dual-band diamond dipole antenna on three various jackets. The jackets are purely fleece fabric with Shieldit fabric patches on top of it. The network analyzers with the flexible lossless coaxial cable are used to measure the communication of the antennas. The experiment involves a man with ideal body mass index (BMI) wearing the jackets by placing the flexible antennas on top of it. It is observed that the best on-body communication is by wearing the engineered jacket. The 10 dB improvements are observed when the antenna is positioned on top of engineered jacket contrast to the regular jacket. In other words, the performance of the antenna is also be determined by antenna placement. High transmission lossesses cause the antenna mismatch when the antennas are positioned above the full conductive jacket.