Belal A. Hamida
International Islamic University Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Reduction of Four-Wave Mixing in DWDM System using Electro-Optic Phase Modulator Naif Alsowaidi; Tawfig Eltaif; Mohd Ridzuan Mokhtar; Belal A. Hamida
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 4: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (441.361 KB) | DOI: 10.11591/ijece.v8i4.pp2384-2389

Abstract

In this paper, electro-optic phase modulator (EOPM) is used to reduce the effect of four-wave mixing (FWM), which is placed after 64 DWDM-channels multiplexer. It was found that the FWM is very sensitive to the phase deviation of the EOPM, and it can be reduced by introducing a phase shift between pulses. The simulation results confirmed the ability of the EOPM in improving the system performanceas indicated by the bit error rates. In term of comparison, the system of 64 channels based intensity modulated/ direct detection (IM/DD) transmission achieved bit error rate of 10-26 over 30 km and 70km without and with EOPM, respectively.
A novel optimization harmonic elimination technique for cascaded multilevel inverter Ezzidin Hassan Aboadla; Sheroz Khan; Mohamed H. Habaebi; Teddy Surya Gunawan; Belal A. Hamida; Mashkuri Bin Yaacob; Ali Aboadla
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1385.13 KB) | DOI: 10.11591/eei.v8i2.1500

Abstract

The main goal of utilizing Selective Harmonic Elimination (SHE) techniques in Multilevel Inverters (MLI) is to produce a high-quality output voltage signal with a minimum Total Harmonic Distortion (THD). By calculating N switching angles, SHE technique can eliminate (N-1) low order odd harmonics of the output voltage waveform. To optimized and obtained these switching angles, N of nonlinear equations should be solved using a numerical method. Modulation index (m) and duty cycle play a big role in selective harmonic elimination technique to obtain a minimum harmonic distortion and desired fundamental component voltage. In this paper, a novel Optimization Harmonic Elimination Technique (OHET) based on SHE scheme is proposed to re-mitigate Total Harmonic Distortion. The performance of seven-level H-bridge cascade inverter is evaluated using PSIM and validated experimentally by developing a purposely built microcontroller-based printed circuit board.
A novel optimization harmonic elimination technique for cascaded multilevel inverter Ezzidin Hassan Aboadla; Sheroz Khan; Mohamed H. Habaebi; Teddy Surya Gunawan; Belal A. Hamida; Mashkuri Bin Yaacob; Ali Aboadla
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1385.13 KB) | DOI: 10.11591/eei.v8i2.1500

Abstract

The main goal of utilizing Selective Harmonic Elimination (SHE) techniques in Multilevel Inverters (MLI) is to produce a high-quality output voltage signal with a minimum Total Harmonic Distortion (THD). By calculating N switching angles, SHE technique can eliminate (N-1) low order odd harmonics of the output voltage waveform. To optimized and obtained these switching angles, N of nonlinear equations should be solved using a numerical method. Modulation index (m) and duty cycle play a big role in selective harmonic elimination technique to obtain a minimum harmonic distortion and desired fundamental component voltage. In this paper, a novel Optimization Harmonic Elimination Technique (OHET) based on SHE scheme is proposed to re-mitigate Total Harmonic Distortion. The performance of seven-level H-bridge cascade inverter is evaluated using PSIM and validated experimentally by developing a purposely built microcontroller-based printed circuit board.
A novel optimization harmonic elimination technique for cascaded multilevel inverter Ezzidin Hassan Aboadla; Sheroz Khan; Mohamed H. Habaebi; Teddy Surya Gunawan; Belal A. Hamida; Mashkuri Bin Yaacob; Ali Aboadla
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1385.13 KB) | DOI: 10.11591/eei.v8i2.1500

Abstract

The main goal of utilizing Selective Harmonic Elimination (SHE) techniques in Multilevel Inverters (MLI) is to produce a high-quality output voltage signal with a minimum Total Harmonic Distortion (THD). By calculating N switching angles, SHE technique can eliminate (N-1) low order odd harmonics of the output voltage waveform. To optimized and obtained these switching angles, N of nonlinear equations should be solved using a numerical method. Modulation index (m) and duty cycle play a big role in selective harmonic elimination technique to obtain a minimum harmonic distortion and desired fundamental component voltage. In this paper, a novel Optimization Harmonic Elimination Technique (OHET) based on SHE scheme is proposed to re-mitigate Total Harmonic Distortion. The performance of seven-level H-bridge cascade inverter is evaluated using PSIM and validated experimentally by developing a purposely built microcontroller-based printed circuit board.