Mohd Farhan Md Fudzee
Universiti Tun Hussein Onn Malaysia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Multi-objective NSGA-II based community detection using dynamical evolution social network Muhammed E. Abd Alkhalec Tharwat; Mohd Farhan Md Fudzee; Shahreen Kasim; Azizul Azhar Ramli; Mohammed K. Ali
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp4502-4512

Abstract

Community detection is becoming a highly demanded topic in social networking-based applications. It involves finding the maximum intraconnected and minimum inter-connected sub-graphs in given social networks. Many approaches have been developed for community’s detection and less of them have focused on the dynamical aspect of the social network. The decision of the community has to consider the pattern of changes in the social network and to be smooth enough. This is to enable smooth operation for other community detection dependent application. Unlike dynamical community detection Algorithms, this article presents a non-dominated aware searching Algorithm designated as non-dominated sorting based community detection with dynamical awareness (NDS-CD-DA). The Algorithm uses a non-dominated sorting genetic algorithm NSGA-II with two objectives: modularity and normalized mutual information (NMI). Experimental results on synthetic networks and real-world social network datasets have been compared with classical genetic with a single objective and has been shown to provide superiority in terms of the domination as well as the convergence. NDS-CD-DA has accomplished a domination percentage of 100% over dynamic evolutionary community searching DECS for almost all iterations.
Sentiment Analysis in Karonese Tweet using Machine Learning Ichwanul Muslim Karo Karo; Mohd Farhan Md Fudzee; Shahreen Kasim; Azizul Azhar Ramli
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 10, No 1: March 2022
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v10i1.3565

Abstract

Recently, many social media users expressed their conditions, ideas, emotions using local languages ​​on social media, for example via tweets or status. Due to the large number of texts, sentiment analysis is used to identify opinions, ideas, or thoughts from social media. Sentiment analysis research has also been widely applied to local languages. Karonese is one of the largest local languages ​​in North Sumatera, Indonesia. Karo society actively use the language in expression on twitter. This study proposes two things: Karonese tweet dataset for classification and analysis of sentiment on Karonese. Several machine learning algorithms are implemented in this research, that is Logistic regression, Naive bayes, K-nearest neighbor, and Support Vector Machine (SVM). Karonese tweets is obtained from timeline twitter based on several keywords and hashtags. Transcribers from ethnic figures helped annotating the Karo tweets into three classes: positive, negative, and neutral. To get the best model, several scenarios were run based on various compositions of training data and test data. The SVM algorithm has highest accuracy, precision, recall, and F-1 scores than others. As the research is a preliminary research of sentiment analysis on Karonese language, there are many feature works to improvement.
An Effective Pre-Processing Phase for Gene Expression Classification Choon Sen Seah; Shahreen Kasim; Mohd Farhan Md Fudzee; Mohd Saberi Mohamad; Rd Rohmat Saedudin; Rohayanti Hassan; Mohd Arfian Ismail; Rodziah Atan
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i3.pp1223-1227

Abstract

A raw dataset prepared by researchers comes with a lot of information. Whether the information is usefull or not, completely depends on the requirement and purposes. In machine learning, data pre-processing is the very initial stage. It is a must to make sure the dataset is totally suitable for the requirement. In significant directed random walk (sDRW), there are three steps in data pre-processing stage. First, we remove unwanted attributes, missing value and proper arrangement, followed by normalization of the expression value and lastly, filtering method is applied. The first two steps are completed by Bioconductor package while the last step is works in sDRW.