Mohd Saberi Mohamad
Universiti Malaysia Kelantan

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Review of the machine learning methods in the classification of phishing attack John Arthur Jupin; Tole Sutikno; Mohd Arfian Ismail; Mohd Saberi Mohamad; Shahreen Kasim; Deris Stiawan
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (723.905 KB) | DOI: 10.11591/eei.v8i4.1344

Abstract

The development of computer networks today has increased rapidly. This can be seen based on the trend of computer users around the world, whereby they need to connect their computer to the Internet. This shows that the use of Internet networks is very important, whether for work purposes or access to social media accounts. However, in widely using this computer network, the privacy of computer users is in danger, especially for computer users who do not install security systems in their computer. This problem will allow hackers to hack and commit network attacks. This is very dangerous, especially for Internet users because hackers can steal confidential information such as bank login account or social media login account. The attacks that can be made include phishing attacks. The goal of this study is to review the types of phishing attacks and current methods used in preventing them. Based on the literature, the machine learning method is widely used to prevent phishing attacks. There are several algorithms that can be used in the machine learning method to prevent these attacks. This study focused on an algorithm that was thoroughly made and the methods in implementing this algorithm are discussed in detail.
Review of the machine learning methods in the classification of phishing attack John Arthur Jupin; Tole Sutikno; Mohd Arfian Ismail; Mohd Saberi Mohamad; Shahreen Kasim; Deris Stiawan
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (723.905 KB) | DOI: 10.11591/eei.v8i4.1344

Abstract

The development of computer networks today has increased rapidly. This can be seen based on the trend of computer users around the world, whereby they need to connect their computer to the Internet. This shows that the use of Internet networks is very important, whether for work purposes or access to social media accounts. However, in widely using this computer network, the privacy of computer users is in danger, especially for computer users who do not install security systems in their computer. This problem will allow hackers to hack and commit network attacks. This is very dangerous, especially for Internet users because hackers can steal confidential information such as bank login account or social media login account. The attacks that can be made include phishing attacks. The goal of this study is to review the types of phishing attacks and current methods used in preventing them. Based on the literature, the machine learning method is widely used to prevent phishing attacks. There are several algorithms that can be used in the machine learning method to prevent these attacks. This study focused on an algorithm that was thoroughly made and the methods in implementing this algorithm are discussed in detail.
Review of the machine learning methods in the classification of phishing attack John Arthur Jupin; Tole Sutikno; Mohd Arfian Ismail; Mohd Saberi Mohamad; Shahreen Kasim; Deris Stiawan
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (723.905 KB) | DOI: 10.11591/eei.v8i4.1344

Abstract

The development of computer networks today has increased rapidly. This can be seen based on the trend of computer users around the world, whereby they need to connect their computer to the Internet. This shows that the use of Internet networks is very important, whether for work purposes or access to social media accounts. However, in widely using this computer network, the privacy of computer users is in danger, especially for computer users who do not install security systems in their computer. This problem will allow hackers to hack and commit network attacks. This is very dangerous, especially for Internet users because hackers can steal confidential information such as bank login account or social media login account. The attacks that can be made include phishing attacks. The goal of this study is to review the types of phishing attacks and current methods used in preventing them. Based on the literature, the machine learning method is widely used to prevent phishing attacks. There are several algorithms that can be used in the machine learning method to prevent these attacks. This study focused on an algorithm that was thoroughly made and the methods in implementing this algorithm are discussed in detail.
An Effective Pre-Processing Phase for Gene Expression Classification Choon Sen Seah; Shahreen Kasim; Mohd Farhan Md Fudzee; Mohd Saberi Mohamad; Rd Rohmat Saedudin; Rohayanti Hassan; Mohd Arfian Ismail; Rodziah Atan
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i3.pp1223-1227

Abstract

A raw dataset prepared by researchers comes with a lot of information. Whether the information is usefull or not, completely depends on the requirement and purposes. In machine learning, data pre-processing is the very initial stage. It is a must to make sure the dataset is totally suitable for the requirement. In significant directed random walk (sDRW), there are three steps in data pre-processing stage. First, we remove unwanted attributes, missing value and proper arrangement, followed by normalization of the expression value and lastly, filtering method is applied. The first two steps are completed by Bioconductor package while the last step is works in sDRW.